Skip to main content

Advertisement

Log in

Identifying possible hub genes and biological mechanisms shared between bladder cancer and inflammatory bowel disease using machine learning and integrated bioinformatics

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Recent studies have shown that inflammatory bowel disease (IBD) is associated with bladder cancer (BC) incidence. But there is still a lack of understanding regarding its pathogenesis. Thus, this study aimed to identify potential hub genes and their important pathways and pathological mechanisms of interactions between IBD and BC using bioinformatics methods.

Methods

The data from Gene Expression Omnibus (GEO) and the cancer genome atlas (TCGA) were analyzed to screen common differentially expressed genes (DEGs) between IBD and BC. The “clusterProfiler” package was used to analyze GO term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment in DEGs. After that, we conducted a weighted gene co-expression network analysis (WGCNA) on these DEGs to determine the vital modules and genes significantly related to BC. Protein–protein interaction (PPI) networks was used to identify hub genes. Further, the hub genes were used to develop a prognostic signature by Cox analysis. The validity of the ten hub DEGs was tested using three classification algorithms. Finally, we analyzed the microRNAs (miRNA)-mRNA, transcription factors (TFs)-mRNA regulatory network.

Results

Positive regulation of organelle fission, chromosomal region, tubulin binding, and cell cycle signaling pathway were the major enriched pathways for the common DEGs. PPI networks identified three hub proteins (AURKB, CDK1, and CCNA2) with high connectivity. Three machine-learning classification algorithms based on ten hub genes performed well for IBD and BC (accuracy > 0.80). The robust predictive model based on the ten hub genes could accurately classify BC cases with various clinical outcomes. Based on the gene-TFs and gene-miRNAs network construction, 9 TFs and 6 miRNAs were identified as potential critical TFs and miRNAs. There are 13 drugs that interact with the hub gene based on gene-drug interaction analysis.

Conclusions

This study explored common gene signatures and the potential pathogenesis of IBD and BC. We revealed that an unbalanced immune response, cell cycle pathway, and neutrophil infiltration might be the common pathogenesis of IBD and BC. Molecular mechanisms for the treatment of IBD and CC still require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article. The data are not publicly available due to data protection reasons.

Abbreviations

AUC:

Area under the curve

AURKB:

Aurora kinases B

BC:

Bladder cancer

BP:

Biological processes

CC:

Cellular component

CD:

Crohn’s disease

CDKs:

Cyclin‐dependent kinases

DCA:

Decision curve analysis

DEGs:

Differentially expressed genes

DGIdb:

Drug Gene Interaction Database

FC:

Foldchange

FDR:

False Discovery Rate

GEO:

Gene expression omnibus

GO:

Gene ontology

GS:

Gene significance

HPA:

Human Protein Atlas

IBD:

Inflammatory bowel disease

IHC:

Immunohistochemistry

KEGG:

Kyoto encyclopedia of genes and genomes

MCODE:

Molecular complex detection

MDM2:

Mouse double minute 2

ME:

Module eigengene

MF:

Molecular function

MM:

Module membership

OS:

Overall survival

PPI:

Protein–protein interaction

ROC:

Receiver operating characteristic

SVM:

Support vector machine

TFCP2L1:

Transcription factor CP2‐like protein 1

TFs:

Transcription factors

TCGA:

The cancer genome atlas

UALCAN:

University of ALabama at Birmingham CANcer data analysis Portal

UC:

Ulcerative colitis

WGCNA:

Weighted gene co-expression network analysis

References

  • Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A (2022) mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 12(1):5885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Algaba A, Guerra I, Castaño A, de la Poza G, Castellano VM, López M et al (2013) Risk of cancer, with special reference to extra-intestinal malignancies, in patients with inflammatory bowel disease. World J Gastroenterol 19(48):9359–9365

    PubMed  PubMed Central  Google Scholar 

  • Arooz T, Yam CH, Siu WY, Lau A, Li KK, Poon RY (2000) On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells. Biochemistry 39(31):9494–9501

    CAS  PubMed  Google Scholar 

  • Axelrad JE, Lichtiger S, Yajnik V (2016) Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment. World J Gastroenterol 22(20):4794–4801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K (2021) Food additive emulsifiers and their impact on gut microbiome, permeability, and inflammation: mechanistic insights in inflammatory bowel disease. J Crohns Colitis 15(6):1068–1079

    PubMed  Google Scholar 

  • Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369(9573):1627–1640

    CAS  PubMed  Google Scholar 

  • Belluti S, Semeghini V, Rigillo G, Ronzio M, Benati D, Torricelli F et al (2021) Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients. J Exp Clin Cancer Res 40(1):362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bendris N, Cheung CT, Leong HS, Lewis JD, Chambers AF, Blanchard JM et al (2014) Cyclin A2, a novel regulator of EMT. Cell Mol Life Sci 71(24):4881–4894

    CAS  PubMed  Google Scholar 

  • Biancone L, Armuzzi A, Scribano ML, Castiglione F, D’Incà R, Orlando A et al (2020) Cancer risk in inflammatory bowel disease: a 6-year prospective multicenter nested case-control IG-IBD study. Inflamm Bowel Dis 26(3):450–459

    PubMed  Google Scholar 

  • Bourrier A, Carrat F, Colombel JF, Bouvier AM, Abitbol V, Marteau P et al (2016) Excess risk of urinary tract cancers in patients receiving thiopurines for inflammatory bowel disease: a prospective observational cohort study. Aliment Pharmacol Ther 43(2):252–261

    CAS  PubMed  Google Scholar 

  • Burgess EF, Livasy C, Trufan S, Zhu J, O’Connor HF, Hartman A et al (2022) Clinical outcomes associated with expression of aurora kinase and p53 family members in muscle-invasive bladder cancer. Mol Clin Oncol 16(5):102

    PubMed  PubMed Central  Google Scholar 

  • Chang JT (2020) Pathophysiology of Inflammatory Bowel Diseases. N Engl J Med 383(27):2652–2664

    CAS  PubMed  Google Scholar 

  • Cheng C, Varn FS, Marsit CJ (2015) E2F4 program is predictive of progression and intravesical immunotherapy efficacy in bladder cancer. Mol Cancer Res 13(9):1316–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Yang Q, Han X, Wang H, Wu K, Zhao H (2022) Yin Yang 1-stimulated long noncoding RNA bladder cancer-associated transcript 1 upregulation facilitates esophageal carcinoma progression via the microRNA-5590-3p/programmed cell death-ligand 1 pathway. Bioengineered 13(4):10244–10257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG et al (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7(4):256–269

    PubMed  PubMed Central  Google Scholar 

  • Gao Q, Fan L, Chen Y, Cai J (2022) Identification of the hub and prognostic genes in liver hepatocellular carcinoma via bioinformatics analysis. Front Mol Biosci 9:1000847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Z, Geng Q (2021) Risk of urinary bladder cancer in patients with inflammatory bowel diseases: a meta-analysis. Front Surg 8:636791

    PubMed  PubMed Central  Google Scholar 

  • González-Loyola A, Fernández-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H et al (2015) Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development. Mol Cell Biol 35(20):3566–3578

    PubMed  PubMed Central  Google Scholar 

  • Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51(1):27–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gully CP, Velazquez-Torres G, Shin J-H, Fuentes-Mattei E, Wang E, Carlock C et al (2012) Aurora B kinase phosphorylates and instigates degradation of p53. Proc Natl Acad Sci USA 109(24):E1513–E1522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heo J, Noh B-J, Lee S, Lee H-Y, Kim Y, Lim J et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med 12(1):e10880

    CAS  PubMed  Google Scholar 

  • Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S et al (2022) The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 54(6):801–811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Pan J, Xin Y, Mi X, Wang J, Gao Q et al (2018) Gene expression analysis reveals novel gene signatures between young and old adults in human prefrontal cortex. Front Aging Neurosci 10:259

    PubMed  PubMed Central  Google Scholar 

  • Jasek K, Kubatka P, Samec M, Liskova A, Smejkal K, Vybohova D et al (2019) DNA methylation status in cancer disease: modulations by plant-derived natural compounds and dietary interventions. Biomolecules 9(7):289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Li H, Fang Y, Xu C (2022) LncRNA PVT1 contributes to invasion and doxorubicin resistance of bladder cancer cells through promoting MDM2 expression and AURKB-mediated p53 ubiquitination. Environ Toxicol 37(6):1495–1508

    CAS  PubMed  Google Scholar 

  • Kandimalla R, van Tilborg AAG, Kompier LC, Stumpel DJPM, Stam RW, Bangma CH et al (2012) Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol 61(6):1245–1256

    CAS  PubMed  Google Scholar 

  • Kaplan GG (2015) The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 12(12):720–727

    PubMed  Google Scholar 

  • Kappelman MD, Farkas DK, Long MD, Erichsen R, Sandler RS, Sørensen HT et al (2014) Risk of cancer in patients with inflammatory bowel diseases: a nationwide population-based cohort study with 30 years of follow-up evaluation. Clin Gastroenterol Hepatol 12(2):265–273

    PubMed  Google Scholar 

  • Keller DS, Windsor A, Cohen R, Chand M (2019) Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech Coloproctol 23(1):3–13

    CAS  PubMed  Google Scholar 

  • Kristensen SL, Lindhardsen J, Ahlehoff O, Erichsen R, Lamberts M, Khalid U et al (2013) Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: a nationwide study. EP Europace 16(4):477–484

    PubMed  Google Scholar 

  • Laish I, Biron-Shental T, Katz H, Liberman M, Kitay-Cohen Y, Konikoff FM et al (2015) Asynchronous replication in lymphocytes from patients with inflammatory bowel disease and primary sclerosing cholangitis. Cytogenet Genome Res 145(1):35–41

    PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    PubMed  PubMed Central  Google Scholar 

  • Li J, Ying Y, Xie H, Jin K, Yan H, Wang S et al (2019) Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer. FASEB J 33(1):1374–1388

    CAS  PubMed  Google Scholar 

  • Li Y, Sun C, Tan Y, Li L, Zhang H, Liang Y et al (2020) Transcription levels and prognostic significance of the NFI family members in human cancers. PeerJ 8:e8816

    PubMed  PubMed Central  Google Scholar 

  • Li P, Zhang H-Y, Gao J-Z, Du W-Q, Tang D, Wang W et al (2022) Mesenchymal stem cells-derived extracellular vesicles containing miR-378a-3p inhibit the occurrence of inflammatory bowel disease by targeting GATA2. J Cell Mol Med 26(11):3133–3146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J-T, Tsai K-W (2021) Circulating miRNAs act as diagnostic biomarkers for bladder cancer in urine. Int J Mol Sci 22(8):4278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang X, Guo L, Luo N (2022) LINC00649 facilitates the cellular process of bladder cancer cells via signaling axis miR-16-5p/JARID2. Urol Int 106(3):304–312

    CAS  PubMed  Google Scholar 

  • Lu Y-T, Xu T, Iqbal M, Hsieh T-C, Luo Z, Liang G et al (2022) FOXC1 binds enhancers and promotes cisplatin resistance in bladder cancer. Cancers 14(7):1717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Wang J, Xu W, Ma C, Wan F, Huang Y et al (2021) LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis 12(11):1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv S, Liu L, Yang B, Zhao X (2022) Association of miR-9-5p and NFIC in the progression of gastric cancer. Hum Exp Toxicol 41:9603271221084672

    CAS  PubMed  Google Scholar 

  • Madanchi M, Zeitz J, Barthel C, Samaras P, Scharl S, Sulz MC et al (2016) Malignancies in patients with inflammatory bowel disease: a single-centre experience. Digestion 94(1):1–8

    CAS  PubMed  Google Scholar 

  • Magzoub MM, Prunello M, Brennan K, Gevaert O (2019) The impact of DNA methylation on the cancer proteome. PLoS Comput Biol 15(7):e1007245

    PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    CAS  PubMed  Google Scholar 

  • Mark-Christensen A, Erichsen R, Veres K, Laurberg S, Sørensen HT (2020) Extracolonic cancer risk after total colectomy for inflammatory bowel disease: a population-based cohort study. J Crohns Colitis 14(5):630–635

    PubMed  Google Scholar 

  • Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23(1):74–88

    CAS  PubMed  Google Scholar 

  • Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI et al (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390(10114):2769–2778

    PubMed  Google Scholar 

  • Nguyen TB, Do DN, Nguyen-Thi M-L, Hoang-The H, Tran T-T, Nguyen-Thanh T (2022a) Identification of potential crucial genes and key pathways shared in Inflammatory Bowel Disease and cervical cancer by machine learning and integrated bioinformatics. Comput Biol Med 149:105996

    CAS  PubMed  Google Scholar 

  • Nguyen TB, Do DN, Nguyen TTP, Nguyen TL, Nguyen-Thanh T, Nguyen HT (2022b) Immune-related biomarkers shared by inflammatory bowel disease and liver cancer. PLoS One 17(4):e0267358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA (2013) Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 70(4):661–687

    CAS  PubMed  Google Scholar 

  • Pedersen N, Duricova D, Elkjaer M, Gamborg M, Munkholm P, Jess T (2010) Risk of extra-intestinal cancer in inflammatory bowel disease: meta-analysis of population-based cohort studies. Am J Gastroenterol 105(7):1480–1487

    PubMed  Google Scholar 

  • Prencipe M, Fabre A, Murphy TB, Vargyas E, O’Neill A, Bjartell A et al (2018) Role of serum response factor expression in prostate cancer biochemical recurrence. Prostate 78(10):724–730

    CAS  PubMed  Google Scholar 

  • Rogler G, Singh A, Kavanaugh A, Rubin DT (2021) Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology 161(4):1118–1132

    CAS  PubMed  Google Scholar 

  • Tian Z, Cao S, Li C, Xu M, Wei H, Yang H et al (2019) LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/ CDK1. J Cell Physiol 234(4):4799–4811

    CAS  PubMed  Google Scholar 

  • van Kessel KEM, van der Keur KA, Dyrskjøt L, Algaba F, Welvaart NYC, Beukers W et al (2018) Molecular markers increase precision of the european association of urology non-muscle-invasive bladder cancer progression risk groups. Clin Cancer Res 24(7):1586–1593

    PubMed  Google Scholar 

  • Wang D, Liu J, Liu S, Li W (2020a) Identification of crucial genes associated with immune cell infiltration in hepatocellular carcinoma by weighted gene co-expression network analysis. Front Genet 11:342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Shi X, Wu S (2020b) miR-550a-3/NFIC plays a driving role in esophageal squamous cell cancer cells proliferation and metastasis partly through EMT process. Mol Cell Biochem 472(1–2):115–123

    CAS  PubMed  Google Scholar 

  • Wang J, Peng X, Li R, Liu K, Zhang C, Chen X et al (2021) Evaluation of serum miR-17-92 cluster as noninvasive biomarkers for bladder cancer diagnosis. Front Oncol 11:795837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JC, Furlano RI, Jick SS, Meier CR (2015) Inflammatory bowel disease and the risk of autoimmune diseases. J Crohns Colitis 10(2):186–193

    PubMed  Google Scholar 

  • Xu G, Zhang Y, Li N, Wu Y, Zhang J, Xu R et al (2020) LBX2-AS1 up-regulated by NFIC boosts cell proliferation, migration and invasion in gastric cancer through targeting miR-491-5p/ZNF703. Cancer Cell Int 20:136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi L, Wang H, Li W, Ye K, Xiong W, Yu H et al (2021) The FOXM1/RNF26/p57 axis regulates the cell cycle to promote the aggressiveness of bladder cancer. Cell Death Dis 12(10):944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng B, Zhao Q, Sun Z, Liu D, Chen H, Li X et al (2021) SEC23A is an independent prognostic biomarker in bladder cancer correlated with MAPK signaling. Front Genet 12:672832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang W, Lin J, Xiao J, Tian Y (2019) lncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion. Int Braz J Urol 45(3):549–559

    PubMed  PubMed Central  Google Scholar 

  • Zhang M, Xu Y, Yin S, Qiu F (2021) YY1-induced long non-coding RNA PSMA3 antisense RNA 1 functions as a competing endogenous RNA for microRNA 214–5p to expedite the viability and restrict the apoptosis of bladder cancer cells via regulating programmed cell death-ligand 1. Bioengineered 12(2):9150–9161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Han S-X, Ma J-L, Ying X, Liu P, Li J et al (2013) The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 30(1):253–259

    CAS  PubMed  Google Scholar 

  • Zheng L, Xu H, Di Y, Chen L, Liu J, Kang L et al (2021) ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J Transl Med 19(1):342

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was funded by the National Key Research and Development Program of China (Grant Numbers: 2018YFC2002202) and the Chinese Academy of Medical Sciences (Grant Numbers: BJ-2022-237).

Author information

Authors and Affiliations

Authors

Contributions

JL: project development, data collection, data analysis, manuscript writing. PW: data collection, data analysis, manuscript editing. SL: data collection, data analysis, manuscript editing. Jianye Wang: project development, data analysis, manuscript editing. Jianlong Wang: project development, data analysis, manuscript editing. YZ: project development, data analysis, manuscript editing.

Corresponding authors

Correspondence to Jianye Wang, Jianlong Wang or Yaoguang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Informed consent statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1390 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wu, P., Lai, S. et al. Identifying possible hub genes and biological mechanisms shared between bladder cancer and inflammatory bowel disease using machine learning and integrated bioinformatics. J Cancer Res Clin Oncol 149, 16885–16904 (2023). https://doi.org/10.1007/s00432-023-05266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05266-0

Keywords

Navigation