Skip to main content

Advertisement

Log in

Analysis of prognostic biomarker models and immune microenvironment in acute myeloid leukemia by integrative bioinformatics

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Acute myeloid leukemia (AML) is a hematological cancer driven on by aberrant myeloid precursor cell proliferation and differentiation. A prognostic model was created in this study to direct therapeutic care.

Methods

Differentially expressed genes (DEGs) were investigated using the RNA-seq data from the TCGA-LAML and GTEx. Weighted Gene Coexpression Network Analysis (WGCNA) examines the genes involved in cancer. Find the intersection genes and construct the PPI network to discover hub genes and remove prognosis-related genes. A nomogram was produced for predicting the prognosis of AML patients using the risk prognosis model that was constructed using COX and Lasso regression analysis. GO, KEGG, and ssGSEA analysis were used to look into its biological function. TIDE score predicts immunotherapy response.

Results

Differentially expressed gene analysis revealed 1004 genes, WGCNA analysis revealed 19,575 tumor-related genes, and 941 intersection genes in total. Twelve prognostic genes were found using the PPI network and prognostic analysis. To build a risk rating model, RPS3A and PSMA2 were examined using COX and Lasso regression analysis. The risk score was used to divide the patients into two groups, and Kaplan–Meier analysis indicated that the two groups had different overall survival rates. Univariate and multivariate COX studies demonstrated that risk score is an independent prognostic factor. According to the TIDE study, the immunotherapy response was better in the low-risk group than in the high-risk group.

Conclusions

We eventually selected out two molecules to construct prediction models that might be used as biomarkers for predicting AML immunotherapy and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [J]. Blood 127(20):2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Ayyadurai VAS, Deonikar P, Mclure KG et al (2022) Molecular systems architecture of Interactome in the Acute Myeloid Leukemia Microenvironment [J]. Cancers 14(3):756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balch CM, Riley LB, Bae YJ et al (1990) Patterns of human tumor-infiltrating lymphocytes in 120 human cancers [J]. Archiv Surg (chicago, Ill : 1960) 125(2):200–205

    Article  CAS  Google Scholar 

  • Barnes TA, Amir E (2018) HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer [J]. Br J Cancer 118(2):e5

    Article  PubMed  PubMed Central  Google Scholar 

  • Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy [J]. Nat Med 24(5):541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey SC, Amedei A, Aquilano K et al (2015) Cancer prevention and therapy through the modulation of the tumor microenvironment [J]. Semi Cancer Biol 35:S199-s223

    Article  Google Scholar 

  • Döhner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel [J]. Blood 129(4):424–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Han J, Koh YJ, Moon HR et al (2010) Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells [J]. Blood 115(5):957–964

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Dong Y, Yang Q et al (2018) Acute Myeloid Leukemia cells express ICOS ligand to promote the expansion of regulatory T cells [J]. Front Immunol 9:2227

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer [J]. Am J Cancer Res 10(3):727–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hino C, Pham B, Park D et al (2022) Targeting the Tumor Microenvironment in Acute Myeloid Leukemia: the future of immunotherapy and natural products [J]. Biomedicines 10(6):1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Li Y, Zhu B (2015) T-cell exhaustion in the tumor microenvironment [J]. Cell Death Dis 6(6):e1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantarjian H (2016) Acute myeloid leukemia–major progress over four decades and glimpses into the future [J]. Am J Hematol 91(1):131–145

    Article  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis [J]. BMC Bioinformat 9:559

    Article  Google Scholar 

  • Liu H, Liu M, You H et al (2020) Oncogenic network and hub genes for natural killer/T-Cell Lymphoma utilizing WGCNA [J]. Front Oncol 10:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes [J]. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  • Menter T, Tzankov A (2022) Tumor Microenvironment in Acute Myeloid Leukemia: adjusting Niches [J]. Front Immunol 13:811144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi D, Woodward E, Ginsburg DB et al (1997) Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits [J]. EMBO J 16(17):5363–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naora H (1999) Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extraribosomal activity? [J]. Immunol Cell Biol 77(3):197–205

    Article  CAS  PubMed  Google Scholar 

  • Panagopoulos I, Gorunova L, Andersen HK et al (2018) PAN3-PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia [J]. Exp Hematol Oncol 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi J, Hu Z, Liu S et al (2020) Comprehensively analyzed Macrophage-Regulated genes indicate that PSMA2 Promotes colorectal cancer progression [J]. Front Oncol 10:618902

    Article  PubMed  Google Scholar 

  • Reizis B (2019) Plasmacytoid dendritic cells: development, regulation, and function [J]. Immunity 50(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renosi F, Callanan M, Lefebvre C (2022) Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic cells [J]. Cancers 14(17):4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes [J]. Science (new York, NY) 233(4770):1318–1321

    Article  CAS  Google Scholar 

  • Sakamoto K, Sato Y, Shinka T et al (2009) Proteasome subunits mRNA expressions correlate with male BMI: implications for a role in obesity [J]. Obesity (silver Spring, Md) 17(5):1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto KM, Grant S, Saleiro D et al (2015) Targeting novel signaling pathways for resistant acute myeloid leukemia [J]. Mol Genet Metab 114(3):397–402

    Article  CAS  PubMed  Google Scholar 

  • Shafat MS, Oellerich T, Mohr S et al (2017) Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment [J]. Blood 129(10):1320–1332

    Article  CAS  PubMed  Google Scholar 

  • Shallis RM, Wang R, Davidoff A et al (2019) Epidemiology of acute myeloid leukemia: recent progress and enduring challenges [J]. Blood Rev 36:70–87

    Article  PubMed  Google Scholar 

  • Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells [J]. Nat Rev Immunol 15(8):471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepanski MJ, Szajnik M, Czystowska M et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia [J]. Clin Cancer Res off J Am Assoc Cancer Res 15(10):3325–3332

    Article  CAS  Google Scholar 

  • Taghiloo S, Asgarian-Omran H (2021) Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways [J]. Crit Rev Oncol Hematol 157:103164

    Article  PubMed  Google Scholar 

  • Tang Y, He Y, Li C et al (2018) RPS3A positively regulates the mitochondrial function of human periaortic adipose tissue and is associated with coronary artery diseases [J]. Cell Discovery 4:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Tettamanti S, Pievani A, Biondi A et al (2022) Catch me if you can: how AML and its niche escape immunotherapy [J]. Leukemia 36(1):13–22

    Article  PubMed  Google Scholar 

  • Ustun C, Miller JS, Munn DH et al (2011) Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? [J]. Blood 118(19):5084–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Liao WJ, Liao JM et al (2015) Ribosomal proteins: functions beyond the ribosome [J]. J Mol Cell Biol 7(2):92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Weng J, Liu C et al (2020) High RPS3A expression correlates with low tumor immune cell infiltration and unfavorable prognosis in hepatocellular carcinoma patients [J]. Am J Cancer Res 10(9):2768–2784

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding support for this research.

Author information

Authors and Affiliations

Authors

Contributions

This study was independently completed by the author.

Corresponding author

Correspondence to Naihong Wang.

Ethics declarations

Conflict of interest

The authors declare that the publication of this paper has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N. Analysis of prognostic biomarker models and immune microenvironment in acute myeloid leukemia by integrative bioinformatics. J Cancer Res Clin Oncol 149, 9609–9619 (2023). https://doi.org/10.1007/s00432-023-04871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04871-3

Keywords

Navigation