Skip to main content

Advertisement

Log in

Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Objectives

More and more evidences show that circular RNAs (circRNAs) can be used as miRNA sponge to regulate the drug resistance of malignancies, including melanoma. However, how exosomal circRNAs participate in the therapeutic resistance of melanoma remains ambiguous.

Methods

Vemurafenib-resistant A375 cells were cultured and then the circRNA profile of exosomes from the parental A375 and A375-resistant cells were sequenced. Transmission electron microscopy (TEM), exogenous nanoparticle tracking analysis (NTA) and Western Blot assays were leveraged to confirm the successful collection of exosomes from A375 and A375R cells. Another five published RNA-seq data and microRNA-seq data, and seven miRNA databases were collected to construct a competing endogenous RNA (ceRNA) network. Comprehensive bioinformatic analysis was adopted to identify key molecules related to the drug resistance, including multiscale embedded gene co-expression network analysis (MEGENA). Then, qRT-PCR, cell viability and colony formation were used to estimate the function of hub circRNAs. The role of has_circ_0001005 in vivo was verified via xenograft assay. The Tumor online Prognostic analyses Platform (ToPP) was leveraged to develop the has_circ_0001005-related prognostic models for melanoma patients based on TCGA data.

Results

Compared with parental cells, hsa_circ_0001005 expression was significantly increased in resistant cells and their exosomes. The elevated level of hsa_circ_0001005 was related to the poor clinical prognosis of melanoma patients. Hsa_circ_0001005 found in melanoma was mainly secreted by drug-resistant cells as exosomes. Exosomal hsa_circ_0001005 activated multiple canonical pathways related to drug resistance through sponging four miRNAs, thus suppressing the drug sensitivity of melanoma. Knocking down hsa_circ_0001005 in vitro, we found that the inhibition of hsa_circ_0001005 could hinder the clone formation of melanoma. Further in vivo animal experiments suggested that suppression of hsa_circ_0001005 can increase the sensitivity to Vemurafenib of melanoma cells. Finally, we also constructed the functional regulatory ceRNA network and prognostic risk models for hsa_circ_0001005, and further survival analysis reveals that the regulatory network and prognostic risk models obviously affected the prognosis of melanoma patients.

Conclusions

This study confirmed that the level of hsa_circ_0001005 in exosomes is the key factor affecting drug resistance of melanoma, which provides a new potential therapeutic target for melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data related to the research are included in the article or uploaded as supplementary information. The raw data used to support the findings of this study are available from the corresponding authors upon reasonable request.

Abbreviations

GO:

Gene ontology

MF:

Molecular function

BP:

Biological process

CC:

Cellular component

MEGENA:

Multiscale embedded gene co-expression network analysis

KEGG:

Kyoto encyclopedia of genes

OS:

Overall survival

RNA-seq:

RNA sequencing

circRNA:

Circular RNA

TCGA:

The Cancer Genome Atlas

ToPP:

Tumor online Prognostic analyses Platform (http://www.biostatistics.online/topp/index.php)

References

  • Bandyopadhyay S, Mitra R (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25(20):2625–2631

    CAS  PubMed  Google Scholar 

  • Brighton HE, Angus SP, Bo T et al (2018) New mechanisms of resistance to MEK inhibitors in melanoma revealed by intravital imaging. Cancer Res 78(2):542–557

    CAS  PubMed  Google Scholar 

  • Caporali S, Amaro A, Levati L et al (2019) miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. J Exp Clin Cancer Res 38(1):272

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang X (2020) miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 48(D1):D127–D131

    CAS  PubMed  Google Scholar 

  • Chen G, Huang AC, Zhang W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou CH, Shrestha S, Yang CD et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302

    CAS  PubMed  Google Scholar 

  • Davis J, Wayman M (2022) Encorafenib and binimetinib combination therapy in metastatic melanoma. J Adv Pract Oncol 13(4):450–455

    PubMed  PubMed Central  Google Scholar 

  • Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    PubMed  PubMed Central  Google Scholar 

  • Felicetti F, Errico MC, Bottero L et al (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68(8):2745–2754

    CAS  PubMed  Google Scholar 

  • Felicetti F, De Feo A, Coscia C et al (2016) Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med 14:56

    PubMed  PubMed Central  Google Scholar 

  • Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez M, de Mayo Las Casas C, Oramas J et al (2021) Intermittent BRAF inhibition in advanced BRAF mutated melanoma results of a phase II randomized trial. Nat Commun 12(1):7008–10

    Google Scholar 

  • Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801

    CAS  PubMed  Google Scholar 

  • Huser L, Sachindra S, Granados K et al (2018) SOX2-mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. Int J Cancer 143(12):3131–3142

    PubMed  Google Scholar 

  • Iero M, Valenti R, Huber V et al (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15(1):80–88

    CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    CAS  PubMed  Google Scholar 

  • Li JH, Liu S, Zhou H et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(Database issue):92–97

    Google Scholar 

  • Lima LG, Chammas R, Monteiro RQ et al (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283(2):168–175

    CAS  PubMed  Google Scholar 

  • Liu CX, Chen LL (2022) Circular RNAs: characterization, cellular roles, and applications. Cell 185(12):2016–2034

    CAS  PubMed  Google Scholar 

  • Long GV, Grob JJ, Nathan P et al (2016) Factors predictive of response, disease progression, and overall survival after dabrafenib and trametinib combination treatment: a pooled analysis of individual patient data from randomised trials. Lancet Oncol 17(12):1743–1754

    CAS  PubMed  Google Scholar 

  • Luke JJ, Flaherty KT, Ribas A et al (2017) Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 14(8):463–482

    CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    CAS  PubMed  Google Scholar 

  • O’Neill K, Liao WW, Patel A et al (2018) TEsmall identifies small RNAs associated with targeted inhibitor resistance in melanoma. Front Genet 9:461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Aleckovic M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert C, Grob JJ, Stroyakovskiy D et al (2019) Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med 381(7):626–636

    CAS  PubMed  Google Scholar 

  • Shang Q, Du H, Wu X et al (2022) FMRP ligand circZNF609 destabilizes RAC1 mRNA to reduce metastasis in acral melanoma and cutaneous melanoma. J Exp Clin Cancer Res 41(1):170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton KR, Crawford L, Tsui E et al (2017) Melanoma therapeutic strategies that select against resistance by exploiting MYC-driven evolutionary convergence. Cell Rep 21(10):2796–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song WM, Zhang B (2015) Multiscale embedded gene co-expression network analysis. PLoS Comput Biol 11(11):e1004574

    PubMed  PubMed Central  Google Scholar 

  • Sticht C, De La Torre C, Parveen A et al (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13(10):e0206239

    PubMed  PubMed Central  Google Scholar 

  • Su Y, Ko ME, Cheng H et al (2020) Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat Commun 11(1):2345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Tang F, Li J et al (2022) Tumor-derived exosomes: the emerging orchestrators in melanoma. Biomed Pharmacother 149:112832

    CAS  PubMed  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  • Vellano CP, White MG, Andrews MC et al (2022) Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606(7915):797–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XT, Xie YB, Xiao Q (2011) Lentivirus-mediated RNA interference targeting E2F–1 inhibits human gastric cancer MGC-803 cell growth in vivo. Exp Mol Med 43(11):638–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TB, Geng M, Jin H et al (2021) SREBP1 site 1 protease inhibitor PF-429242 suppresses renal cell carcinoma cell growth. Cell Death Dis 12(8):717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webber J, Steadman R, Mason MD et al (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630

    CAS  PubMed  Google Scholar 

  • Xia S, Feng J, Chen K et al (2018) CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 46(D1):D925–D929

    CAS  PubMed  Google Scholar 

  • Xiao D, Barry S, Kmetz D et al (2016) Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett 376(2):318–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Wang LG, Han Y et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Liu K, Wu Y et al (2014) MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/beta-catenin signaling pathway. Oncogene 33(42):5017–5027

    CAS  PubMed  Google Scholar 

  • Zhang H, Deng T, Liu R et al (2017) Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun 8:15016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou PH, Zheng JB, Wei GB et al (2015) Lentivirus-mediated RASSF1A expression suppresses aggressive phenotypes of gastric cancer cells in vitro and in vivo. Gene Ther 22(10):793–801

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by New Area Science and Technology Development Fund of Shanghai Pudong (No. PKJ2018-Y01).

Author information

Authors and Affiliations

Authors

Contributions

WX analyzed the data and wrote the manuscript. QC designed and directed this project, completed biological experiments, exosome chip sequencing, and participated in the revision and editing of the manuscript.

Corresponding author

Correspondence to Qiong Cheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

All animal procedures are approved by Shanghai East Hospital and conform to the policy of Animal Ethics Committee of Shanghai East Hospital on the care, welfare and treatment of experimental animals. All participants consented to participate in the research before participating.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cheng, Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol 149, 5921–5936 (2023). https://doi.org/10.1007/s00432-022-04434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04434-y

Keywords

Navigation