Skip to main content

Advertisement

Log in

Novel targets for immunotherapy associated with exhausted CD8 + T cells in cancer

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

In response to prolonged stimulation by tumour antigens, T cells gradually become exhausted. There is growing evidence that exhausted T cells not only lose their potent effector functions but also express multiple inhibitory receptors. Checkpoint blockade (CPB) therapy can improve cancer by reactivating exhausted effector cell function, leading to durable clinical responses, but further improvements are needed given the limited number of patients who benefit from treatment, even with autoimmune complications. Here, we suggest, based on recent advances that tumour antigens are the primary culprits of exhaustion, followed by some immune cells and cytokines that also play an accomplice role in the exhaustion process, and we also propose that chronic stress-induced hypoxia and hormones also play an important role in promoting T-cell exhaustion. Understanding the classification of exhausted CD8+ T-cell subpopulations and their functions is important for the effectiveness of immune checkpoint blockade therapies. We mapped the differentiation of T-cell exhausted subpopulations by changes in transcription factors, indicating that T-cell exhaustion is a dynamic developmental process. Finally, we summarized the novel immune checkpoints associated with depletion in recent years and combined them with bioinformatics to construct a web of exhaustion-related immune checkpoints with the aim of finding novel therapeutic targets associated with T-cell exhaustion in malignant tumours, aiming to revive the killing ability of exhausted T cells and restore anti-tumour immunity through combined targeted immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author/s.

References

  • Acharya N, Madi A, Zhang H, Klapholz M, Escobar G, Dulberg S, Christian E, Ferreira M, Dixon KO, Fell G, Tooley K, Mangani D, Xia J, Singer M, Bosenberg M, Neuberg D, Rozenblatt-Rosen O, Regev A, Kuchroo VK, Anderson AC (2020) Endogenous glucocorticoid signaling regulates CD8(+) T cell differentiation and development of dysfunction in the tumor microenvironment. Immunity 53(3):658-671.e656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y, Eisenberg V, Wohlleber D, Steiger K, Merkler D, Delorenzi M, Knolle PA, Cohen CJ, Thimme R, Youngblood B, Zehn D (2019) TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571(7764):265–269

    Article  CAS  PubMed  Google Scholar 

  • Angata T, Tabuchi Y, Nakamura K, Nakamura M (2007) Siglec-15: an immune system siglec conserved throughout vertebrate evolution. Glycobiology 17(8):838–846

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Gordon SM, Intlekofer AM, Paley MA, Mooney EC, Lindsten T, Wherry EJ, Reiner SL (2010) Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J Immunol 185(9):4988–4992

    Article  CAS  PubMed  Google Scholar 

  • Bannoud N, Dalotto-Moreno T, Kindgard L, García PA, Blidner AG, Mariño KV, Rabinovich GA, Croci DO (2021) Hypoxia supports differentiation of terminally exhausted CD8 T cells. Front Immunol 12:660944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687

    Article  CAS  PubMed  Google Scholar 

  • Barnett BE, Staupe RP, Odorizzi PM, Palko O, Tomov VT, Mahan AE, Gunn B, Chen D, Paley MA, Alter G, Reiner SL, Lauer GM, Teijaro JR, Wherry EJ (2016) Cutting edge: B cell-intrinsic T-bet expression is required to control chronic viral infection. J Immunol 197(4):1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Battaglia A, Buzzonetti A, Monego G, Peri L, Ferrandina G, Fanfani F, Scambia G, Fattorossi A (2008) Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 123(1):129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, Casella V, Ngiow SF, Khan O, Huang YJ, Yan P, Nzingha K, Xu W, Amaravadi RK, Xu X, Karakousis GC, Mitchell TC, Schuchter LM, Huang AC, Wherry EJ (2020) Developmental relationships of four exhausted CD8(+) T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52(5):825-841.e828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O’Brien S, Gherardini PF, Herati RS, Huang AC, Chang KM, Newell EW, Bovenschen N, Pe’er D, Albelda SM, Wherry EJ (2018) Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity 48(5):1029-1045.e1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn SD, Shin H, Freeman GJ, Wherry EJ (2008) Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl Acad Sci U S A 105(39):15016–15021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, Lynn RC, Philip M, Rao A, Restifo NP, Schietinger A, Schumacher TN, Schwartzberg PL, Sharpe AH, Speiser DE, Wherry EJ, Youngblood BA, Zehn D (2019) Defining “T cell exhaustion.” Nat Rev Immunol 19(11):665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DG, Tishon A, Oldstone MBA, McGavern DB (2021) Prevention of CD8 T cell deletion during chronic viral infection. Viruses 13(7):1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S, Loser K, von Boehmer H, Buer J, Hansen W (2004) Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 34(3):623–630

    Article  CAS  PubMed  Google Scholar 

  • Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JW, Messmer MN, Attwood K, Abrams SI, Hylander BL, Repasky EA (2017) β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8(+) T cells and undermines checkpoint inhibitor therapy. Cancer Res 77(20):5639–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S, Gilan O, Bloor S, Noori T, Morgens DW, Bassik MC, Neeson PJ, Behren A, Darcy PK, Dawson SJ, Voskoboinik I, Trapani JA, Cebon J, Lehner PJ, Dawson MA (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549(7670):101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, López-Moyado IF, Seo H, Lio CJ, Hempleman LJ, Sekiya T, Yoshimura A, Scott-Browne JP, Rao A (2019) NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567(7749):530–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Luan J, Chen P, Kuang X, Jiang P, Zhang R, Chen S, Cheng F, Gou X (2020) Immunosuppressive receptor LILRB1 acts as a potential regulator in hepatocellular carcinoma by integrating with SHP1. Cancer Biomark 28(3):309–319

    Article  CAS  PubMed  Google Scholar 

  • Chi D, Wang D, Zhang M, Ma H, Chen F, Sun Y (2021) CLEC12B suppresses lung cancer progression by inducing SHP-1 expression and inactivating the PI3K/AKT signaling pathway. Exp Cell Res 409(2):112914

    Article  CAS  PubMed  Google Scholar 

  • Christensen JP, Bartholdy C, Wodarz D, Thomsen AR (2001) Depletion of CD4+ T cells precipitates immunopathology in immunodeficient mice infected with a noncytocidal virus. J Immunol 166(5):3384–3391

    Article  CAS  PubMed  Google Scholar 

  • Cook KD, Whitmire JK (2013) The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol 190(2):641–649

    Article  CAS  PubMed  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266

    Article  CAS  PubMed  Google Scholar 

  • Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354

    Article  CAS  PubMed  Google Scholar 

  • Duong E, Fessenden TB, Lutz E, Dinter T, Yim L, Blatt S, Bhutkar A, Wittrup KD, Spranger S (2022) Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity 55(2):308-323.e309

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg G, Engelstein R, Geiger-Maor A, Hajaj E, Merims S, Frankenburg S, Uzana R, Rutenberg A, Machlenkin A, Frei G, Peretz T, Lotem M (2018) Soluble SLAMF6 receptor induces strong CD8(+) T-cell effector function and improves anti-melanoma activity in vivo. Cancer Immunol Res 6(2):127–138

    Article  CAS  PubMed  Google Scholar 

  • Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh PK, Wiede F, Zeissig MN, Britt KL, Liang S, Molloy T, Goode N, Xu R, Loi S, Muller M, Humbert PO, McLean C, Tiganis T (2022) PTPN2 elicits cell autonomous and non-cell autonomous effects on antitumor immunity in triple-negative breast cancer. Sci Adv 8(8):eabk338

    Article  Google Scholar 

  • Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5(1):45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, Eisenhaure T, Henrickson SE, Villani AC, Hacohen N, Abudi N, Abramovich R, Cohen JE, Peretz T, Veillette A, Lotem M (2020) SLAMF6 deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. Elife 9:e52539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, Xu L, Chen X, Hao Y, Wang P, Zhu C, Ou J, Liang H, Ni T, Zhang X, Zhou X, Deng K, Chen Y, Luo Y, Xu J, Qi H, Wu Y, Ye L (2016) Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 537(7620):412–428

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Yu A, Othmane B, Qiu D, Li H, Li C, Liu P, Ren W, Chen M, Gong G, Guo X, Zhang H, Chen J, Zu X (2021) Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer. Theranostics 11(7):3089–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson WH, Gensheimer J, Hashimoto M, Wieland A, Valanparambil RM, Li P, Lin JX, Konieczny BT, Im SJ, Freeman GJ, Leonard WJ, Kissick HT, Ahmed R (2019) Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1(+) stem-like CD8(+) T cells during chronic infection. Immunity 51(6):1043-1058.e1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova DL, Krempels R, Denton SL, Fettel KD, Saltz GM, Rach D, Fatima R, Mundhenke T, Materi J, Dunay IR, Gigley JP (2020) NK cells negatively regulate CD8 T cells to promote immune exhaustion and chronic toxoplasma gondii Infection. Front Cell Infect Microbiol 10:313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S (2012) The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 36(6):986–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser AD, Schuster K, Gadiot J, Borkner L, Daebritz H, Schmitt C, Andreesen R, Blank C (2012) Reduced tumor-antigen density leads to PD-1/PD-L1-mediated impairment of partially exhausted CD8+ T cells. Eur J Immunol 42(3):662–671

    Article  CAS  PubMed  Google Scholar 

  • Kallies A, Zehn D, Utzschneider DT (2020) Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol 20(2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12(7):663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Kim HK, Kim HD, Kim CG, Lee H, Han JW, Choi SJ, Jeong S, Jeon M, Kim H, Koh J, Ku BM, Park SH, Ahn MJ, Shin EC (2021) PD-1 blockade-unresponsive human tumor-infiltrating CD8(+) T cells are marked by loss of CD28 expression and rescued by IL-15. Cell Mol Immunol 18(2):385–397

    Article  CAS  PubMed  Google Scholar 

  • Kleppe M, Lahortiga I, El Chaar T, De Keersmaecker K, Mentens N, Graux C, Van Roosbroeck K, Ferrando AA, Langerak AW, Meijerink JP, Sigaux F, Haferlach T, Wlodarska I, Vandenberghe P, Soulier J, Cools J (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet 42(6):530–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleppe M, Soulier J, Asnafi V, Mentens N, Hornakova T, Knoops L, Constantinescu S, Sigaux F, Meijerink JP, Vandenberghe P, Tartaglia M, Foa R, Macintyre E, Haferlach T, Cools J (2011) PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood 117(26):7090–7098

    Article  CAS  PubMed  Google Scholar 

  • Knuschke T, Kollenda S, Wenzek C, Zelinskyy G, Steinbach P, Dittmer U, Buer J, Epple M, Westendorf AM (2021) A combination of anti-PD-L1 treatment and therapeutic vaccination facilitates improved retroviral clearance via reactivation of highly exhausted T cells. Mbio. https://doi.org/10.1128/mBio.02121-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurachi M (2019) CD8(+) T cell exhaustion. Semin Immunopathol 41(3):327–337

    Article  PubMed  Google Scholar 

  • LaFleur MW, Nguyen TH, Coxe MA, Miller BC, Yates KB, Gillis JE, Sen DR, Gaudiano EF, Al Abosy R, Freeman GJ, Haining WN, Sharpe AH (2019) PTPN2 regulates the generation of exhausted CD8(+) T cell subpopulations and restrains tumor immunity. Nat Immunol 20(10):1335–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclerc M, Voilin E, Gros G, Corgnac S, de Montpréville V, Validire P, Bismuth G, Mami-Chouaib F (2019) Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by neuropilin-1. Nat Commun 10(1):3345

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KA, Shin KS, Kim GY, Song YC, Bae EA, Kim IK, Koh CH, Kang CY (2016) Characterization of age-associated exhausted CD8+T cells defined by increased expression of Tim-3 and PD-1. Aging Cell 15(2):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Qi M, Ding F, Lv Y, Ma J, Zhu Y (2021) Tumour targetable and microenvironment-responsive nanoparticles simultaneously disrupt the PD-1/PD-L1 pathway and MAPK/ERK/JNK pathway for efficient treatment of colorectal cancer. J Drug Target 29(4):454–465

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang S, Liu X, Liu J (2019) Aberrant promoter 2 methylation-mediated downregulation of protein tyrosine phosphatase, non-receptor type 6, is associated with progression of esophageal squamous cell carcinoma. Mol Med Rep 19(4):3273–3282

    CAS  PubMed  Google Scholar 

  • Liu C, Somasundaram A, Manne S, Gocher AM, Szymczak-Workman AL, Vignali KM, Scott EN, Normolle DP, John Wherry E, Lipson EJ, Ferris RL, Bruno TC, Workman CJ, Vignali DAA (2020a) Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nat Immunol 21(9):1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Kuo F, Capistrano KJ, Kang D, Nixon BG, Shi W, Chou C, Do MH, Stamatiades EG, Gao S, Li S, Chen Y, Hsieh JJ, Hakimi AA, Taniuchi I, Chan TA, Li MO (2020b) TGF-β suppresses type 2 immunity to cancer. Nature 587(7832):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YN, Yang JF, Huang DJ, Ni HH, Zhang CX, Zhang L, He J, Gu JM, Chen HX, Mai HQ, Chen QY, Zhang XS, Gao S, Li J (2020c) Hypoxia induces mitochondrial defect that promotes t cell exhaustion in tumor microenvironment through MYC-regulated pathways. Front Immunol 11:1906

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhou N, Zhou L, Wang J, Zhou Y, Zhang T, Fang Y, Deng J, Gao Y, Liang X, Lv J, Wang Z, Xie J, Xue Y, Zhang H, Ma J, Tang K, Fang Y, Cheng F, Zhang C, Dong B, Zhao Y, Yuan P, Gao Q, Zhang H, Xiao-Feng Qin F, Huang B (2021) IL-2 regulates tumor-reactive CD8(+) T cell exhaustion by activating the aryl hydrocarbon receptor. Nat Immunol 22(3):358–369

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Liu L, Ji X, Gao Y, Chen X, Liu Y, Liu Y, Zhao X, Li Y, Li Y, Jin Y, Zhang Y, McNutt MA, Yin Y (2015) The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat Immunol 16(12):1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zheng B, Goswami S, Meng L, Zhang D, Cao C, Li T, Zhu F, Ma L, Zhang Z, Zhang S, Duan M, Chen Q, Gao Q, Zhang X (2019) PD1(Hi) CD8(+) T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J Immunother Cancer 7(1):331

    Article  PubMed  PubMed Central  Google Scholar 

  • Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Juneja VR, Weiss SA, Lo J, Fisher DE, Miao D, Van Allen E, Root DE, Sharpe AH, Doench JG, Haining WN (2017) In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547(7664):413–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Usatorre A, Carmona SJ, Godfroid C, Yacoub Maroun C, Labiano S, Romero P (2020) Enhanced Phenotype definition for precision isolation of precursor exhausted tumor-infiltrating CD8 T cells. Front Immunol 11:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matloubian M, Concepcion RJ, Ahmed R (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68(12):8056–8063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495

    Article  CAS  PubMed  Google Scholar 

  • Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W, Logtenberg MEW, Slagter M, Rozeman EA, Hofland I, Broeks A, Horlings HM, Wessels LFA, Blank CU, Xiao Y, Heck AJR, Borst J, Brummelkamp TR, Schumacher TNM (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549(7670):106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Kuchroo JR, Ishizuka JJ, Collier JL, Griffin GK, Maleri S, Comstock DE, Weiss SA, Brown FD, Panda A, Zimmer MD, Manguso RT, Hodi FS, Rodig SJ, Sharpe AH, Haining WN (2019) Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol 20(3):326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, Hoffmann A, Hogan PG, Rao A, Trifari S (2017) Exhaustion-associated regulatory regions in CD8(+) tumor-infiltrating T cells. Proc Natl Acad Sci U S A 114(13):E2776-e2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugaiyan G, Saha B (2013) IL-27 in tumor immunity and immunotherapy. Trends Mol Med 19(2):108–116

    Article  CAS  PubMed  Google Scholar 

  • Myers DR, Abram CL, Wildes D, Belwafa A, Welsh AMN, Schulze CJ, Choy TJ, Nguyen T, Omaque N, Hu Y, Singh M, Hansen R, Goldsmith MA, Quintana E, Smith JAM, Lowell CA (2020) Shp1 loss enhances macrophage effector function and promotes anti-tumor immunity. Front Immunol 11:576310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohaegbulam KC, Liu W, Jeon H, Almo SC, Zang X (2017) Tumor-expressed immune checkpoint B7x promotes cancer progression and antigen-specific CD8 T cell exhaustion and suppressive innate immune cells. Oncotarget 8(47):82740–82753

    Article  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98(24):13866–13871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, Bikoff EK, Robertson EJ, Lauer GM, Reiner SL, Wherry EJ (2012) Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338(6111):1220–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Sari D, Boussiotis VA (2012) PD-1 inhibits T cell proliferation by upregulating p27 and p15 and suppressing Cdc25A. Cell Cycle 11(23):4305–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng DH, Rodriguez BL, Diao L, Chen L, Wang J, Byers LA, Wei Y, Chapman HA, Yamauchi M, Behrens C, Raso G, Soto LMS, Cuentes ERP, Wistuba II, Kurie JM, Gibbons DL (2020) Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat Commun 11(1):4520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petta I, Dejager L, Ballegeer M, Lievens S, Tavernier J, De Bosscher K, Libert C (2016) The interactome of the glucocorticoid receptor and its influence on the actions of glucocorticoids in combatting inflammatory and infectious diseases. Microbiol Mol Biol Rev 80(2):495–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, Scott AC, Viale A, Lauer P, Merghoub T, Hellmann MD, Wolchok JD, Leslie CS, Schietinger A (2017) Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545(7655):452–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presotto D, Erdes E, Duong MN, Allard M, Regamey PO, Quadroni M, Doucey MA, Rufer N, Hebeisen M (2017) Fine-tuning of optimal TCR signaling in tumor-redirected CD8 T cells by distinct TCR affinity-mediated mechanisms. Front Immunol 8:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao G, Chen M, Mohammadpour H, MacDonald CR, Bucsek MJ, Hylander BL, Barbi JJ, Repasky EA (2021) Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol Res 9(6):651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renand A, Milpied P, Rossignol J, Bruneau J, Lemonnier F, Dussiot M, Coulon S, Hermine O (2013) Neuropilin-1 expression characterizes T follicular helper (Tfh) cells activated during B cell differentiation in human secondary lymphoid organs. PLoS ONE 8(12):e85589

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito M, Inoue S, Yamashita K, Kakeji Y, Fukumoto T, Kotani J (2020) IL-15 improves aging-induced persistent T cell exhaustion in mouse models of repeated sepsis. Shock 53(2):228–235

    Article  CAS  PubMed  Google Scholar 

  • Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, Pennathur A, Corry DB, Luketich JD, Lafyatis R, Chen W, Poholek AC, Bruno TC, Workman CJ, Vignali DAA (2019) Adaptive plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 20(6):724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, Peralta R, Wang Y, Wang Y, DePeaux K, Poholek AC, Delgoffe GM (2021) Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol 22(2):205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott AC, Dündar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M, Trivedi P, Menocal L, Appleby H, Camara S, Zamarin D, Walther T, Snyder A, Femia MR, Comen EA, Wen HY, Hellmann MD, Anandasabapathy N, Liu Y, Altorki NK, Lauer P, Levy O, Glickman MS, Kaye J, Betel D, Philip M, Schietinger A (2019) TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571(7764):270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, López-Moyado IF, Georges RO, Zhang W, Onodera A, Wu CJ, Lu LF, Hogan PG, Bhandoola A, Rao A (2019) TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8(+) T cell exhaustion. Proc Natl Acad Sci U S A 116(25):12410–12415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Hu S, Chen X, Danahy DB, Badovinac VP, Zang C, Xue HH (2021) Ectopic Tcf1 expression instills a stem-like program in exhausted CD8(+) T cells to enhance viral and tumor immunity. Cell Mol Immunol 18(5):1262–1277

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, Carmona SJ, Scarpellino L, Gfeller D, Pradervand S, Luther SA, Speiser DE, Held W (2019) Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50(1):195-211.e110

    Article  CAS  PubMed  Google Scholar 

  • Snook JP, Soedel AJ, Ekiz HA, O’Connell RM, Williams MA (2020) Inhibition of SHP-1 expands the repertoire of antitumor T cells available to respond to immune checkpoint blockade. Cancer Immunol Res 8(4):506–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Lu Q, Sanmamed MF, Wang J (2021) Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin Cancer Res 27(3):680–688

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tordjman R, Lepelletier Y, Lemarchandel V, Cambot M, Gaulard P, Hermine O, Roméo PH (2002) A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 3(5):477–482

    Article  CAS  PubMed  Google Scholar 

  • Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, Danilo M, Alfei F, Hofmann M, Wieland D, Pradervand S, Thimme R, Zehn D, Held W (2016) T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity 45(2):415–427

    Article  CAS  PubMed  Google Scholar 

  • Vardhana SA, Hwee MA, Berisa M, Wells DK, Yost KE, King B, Smith M, Herrera PS, Chang HY, Satpathy AT, van den Brink MRM, Cross JR, Thompson CB (2020) Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol 21(9):1022–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagle MV, Vervoort SJ, Kelly MJ, Van Der Byl W, Peters TJ, Martin BP, Martelotto LG, Nüssing S, Ramsbottom KM, Torpy JR, Knight D, Reading S, Thia K, Miosge LA, Howard DR, Gloury R, Gabriel SS, Utzschneider DT, Oliaro J, Powell JD, Luciani F, Trapani JA, Johnstone RW, Kallies A, Goodnow CC, Parish IA (2021) Antigen-driven EGR2 expression is required for exhausted CD8(+) T cell stability and maintenance. Nat Commun 12(1):2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, Zhang J, Song C, Zarr M, Zhou X, Han X, Archer KA, O’Neill T, Herbst RS, Boto AN, Sanmamed MF, Langermann S, Rimm DL, Chen L (2019) Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 25(4):656–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YL, Wei MB, Zhao WW, Feng LL, Yin XK, Bai SM, Wan XB, Hung MC, Zou AZ, Wang MH, Zheng J, Qin C, Fan XJ (2021) Glycosylation of Siglec15 promotes immunoescape and tumor growth. Am J Cancer Res 11(5):2291–2302

    CAS  PubMed  PubMed Central  Google Scholar 

  • West EE, Jin HT, Rasheed AU, Penaloza-Macmaster P, Ha SJ, Tan WG, Youngblood B, Freeman GJ, Smith KA, Ahmed R (2013) PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J Clin Invest 123(6):2604–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77(8):4911–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R (2004) Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc Natl Acad Sci U S A 101(45):16004–16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzig TE, Hu G, Offer SM, Wellik LE, Han JJ, Stenson MJ, Dogan A, Diasio RB, Gupta M (2014) Epigenetic mechanisms of protein tyrosine phosphatase 6 suppression in diffuse large B-cell lymphoma: implications for epigenetic therapy. Leukemia 28(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Ji Y, Moseman EA, Xu HC, Manglani M, Kirby M, Anderson SM, Handon R, Kenyon E, Elkahloun A, Wu W, Lang PA, Gattinoni L, McGavern DB, Schwartzberg PL (2016) The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci Immunol. https://doi.org/10.1126/sciimmunol.aai8593

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, Shih HY, Heuston EF, Kirby M, Anderson S, Cheng J, Khan O, Handon R, Reilley J, Fioravanti J, Hu J, Gossa S, Wherry EJ, Gattinoni L, McGavern DB, O’Shea JJ, Schwartzberg PL, Wu T (2019) Single-cell RNA-seq reveals TOX as a key regulator of CD8(+) T cell persistence in chronic infection. Nat Immunol 20(7):890–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yigit B, Wang N, Ten Hacken E, Chen SS, Bhan AK, Suarez-Fueyo A, Katsuyama E, Tsokos GC, Chiorazzi N, Wu CJ, Burger JA, Herzog RW, Engel P, Terhorst C (2019) SLAMF6 as a regulator of exhausted CD8(+) T cells in cancer. Cancer Immunol Res 7(9):1485–1496

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC (2003) PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422(6931):527–531

    Article  CAS  PubMed  Google Scholar 

  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209(6):1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef G, Gillett C, Agbaje O, Crompton T, Montano X (2014) Phosphorylation of NTRK1 at Y674/Y675 induced by TP53-dependent repression of PTPN6 expression: a potential novel prognostic marker for breast cancer. Mod Pathol 27(3):361–374

    Article  CAS  PubMed  Google Scholar 

  • Yu YR, Imrichova H, Wang H, Chao T, Xiao Z, Gao M, Rincon-Restrepo M, Franco F, Genolet R, Cheng WC, Jandus C, Coukos G, Jiang YF, Locasale JW, Zippelius A, Liu PS, Tang L, Bock C, Vannini N, Ho PC (2020) Disturbed mitochondrial dynamics in CD8(+) TILs reinforce T cell exhaustion. Nat Immunol 21(12):1540–1551

    Article  CAS  PubMed  Google Scholar 

  • Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188(12):2205–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A, Cui W (2019) CD4(+) T cell help is required for the formation of a cytolytic CD8(+) T cell subset that protects against chronic infection and cancer. Immunity 51(6):1028-1042.e1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Schwartz JC, Guo X, Bhatia S, Cao E, Lorenz M, Cammer M, Chen L, Zhang ZY, Edidin MA, Nathenson SG, Almo SC (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20(3):337–347

    Article  CAS  PubMed  Google Scholar 

  • Zhong MC, Veillette A (2008) Control of T lymphocyte signaling by Ly108, a signaling lymphocytic activation molecule family receptor implicated in autoimmunity. J Biol Chem 283(28):19255–19264

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the joint project of Sichuan University andLuzhou Municipal Government (2020CDLZ-24); The project of Science and Technology Department of Sichuan Province (2022NSFSC0699); the Open Programme of Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province (HYX21005); the project of Southwest Medical University (2021ZKQN016).

Author information

Authors and Affiliations

Authors

Contributions

LZ: Resources; Software; Writing – original draft. BZ: Resources; Writing – original draft. LL: Software. YY: Resources; Writing – original draft. YW: Resources; Software. QY: Software; Supervision. WX, XW: Resources; Software. XW: Resources; Software. XG: Supervision. SN: Supervision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiyuan Guo or Siji Nian.

Ethics declarations

Conflict of interest

The authors declare that the submitted work was not carried out in the presence of any personal, professional, or financial relationships that could potentially be constructed as a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, B., Li, L. et al. Novel targets for immunotherapy associated with exhausted CD8 + T cells in cancer. J Cancer Res Clin Oncol 149, 2243–2258 (2023). https://doi.org/10.1007/s00432-022-04326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04326-1

Keywords

Navigation