Skip to main content

Advertisement

Log in

An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bialucha CU et al (2007) p32 is a novel mammalian Lgl binding protein that enhances the activity of protein kinase Cζ and regulates cell polarity. J Cell Biol 178(4):575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas AK et al (2007) Plasmodium falciparum uses gC1qR/HABP1/p32 as a receptor to bind to vascular endothelium and for platelet-mediated clumping. PLoS Pathog 3(9):1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Braun L, Ghebrehiwet B, Cossart P (2000) GC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of listeria monocytogenes. EMBO J 19(7):1458–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni R, Roizman B (1996) Open reading frame P - A herpes simplex virus gene repressed during productive infection encodes a protein that binds a splicing factor and reduces synthesis of viral proteins made from spliced mRNA. Proc Natl Acad Sci USA 93(19):10423–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer, Burden O F. 2020. “WHO Cancer Report 2020 Global Profile.” www.paho.org.

  • “Cancer Facts & Figures 2020.” 2020. American Cancer Society.

  • Chattopadhyay C, Hawke D, Kobayashi R, Maity SN (2004) Human p32, interacts with B subunit of the CCAAT-binding factor, CBF/NF-Y, and inhibits CBF-mediated transcription activation in vitro. Nucleic Acids Res 32(12):3632–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YB et al (2009) increased expression of hyaluronic acid binding protein 1 Is correlated with poor prognosis in patients with breast cancer. J Surg Oncol 100(5):382–386

    Article  CAS  PubMed  Google Scholar 

  • Choi Y et al (2008) A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology 381(2):178–183. https://doi.org/10.1016/j.virol.2008.08.035

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury AR, Ghosh I, Datta K (2008) Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR). Exp Cell Res 314(3):651–667

    Article  CAS  PubMed  Google Scholar 

  • Chung HJ et al (2017) RAP80 binds p32 to preserve the functional integrity of mitochondria. Biochem Biophys Res Commun 492(3):441–446. https://doi.org/10.1016/j.bbrc.2017.08.077

    Article  CAS  PubMed  Google Scholar 

  • D’Souza M, Datta K (1985) Evidence for naturally occurring hyaluronic acid binding protein in rat liver. Biochem Int 10(1):43–51

    PubMed  Google Scholar 

  • D’Souza M, Datta K (1986) A novel glycoprotein that binds to hyaluronic acid. Biochem Int 13:79–88

    PubMed  Google Scholar 

  • Dang CV (2010) p32 (C1QBP) and cancer cell metabolism: is the warburg effect a lot of hot air? Mol Cell Biol 30(6):1300–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb TB, Datta K (1996) Molecular cloning of human fibroblast hyaluronic acid-binding protein confirms its identity with P-32, a protein co-purified with splicing factor SF2. J Biol Chem 271(4):2206–2212

    Article  CAS  PubMed  Google Scholar 

  • Dedio J, Jahnen-Dechent W, Bachmann M, Müller-Esterl W (1998) The multiligand-binding protein gC1qR, putative C1q receptor, is a mitochondrial protein. J Immunol 160:3534–3542

    CAS  PubMed  Google Scholar 

  • Dehghan-Manshadi Mahdi et al (2021) Protective immune response against P32 oncogenic peptide-pulsed PBMCs in mouse models of breast cancer. Int Immunopharmacol 93:107414. https://doi.org/10.1016/j.intimp.2021.107414

    Article  CAS  PubMed  Google Scholar 

  • Dembitzer FR et al (2012) gC1qR expression in normal and pathologic human tissues: differential expression in tissues of epithelial and mesenchymal origin. J Histochem Cytochem 60(6):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egusquiza-Alvarez CA et al (2021) Overexpression of Multifunctional protein p32 promotes a malignant phenotype in colorectal cancer cells. Front Oncol 11:1–15

    Article  Google Scholar 

  • Even Y et al (2006) CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J Cell Biochem 99(3):890–904

    Article  CAS  PubMed  Google Scholar 

  • Fausther-Bovendo PH et al (2010) Hiv gp41 engages gc1qr on cd4+ T cells to induce the expression of an Nk ligand through the pip3/h2o2. PLoS Pathog 6(7):1–14

    Article  CAS  Google Scholar 

  • Feng X, Tonnesen MG, Peerschke EIB, Ghebrehiwet B (2002) Cooperation of C1q receptors and integrins in C1q-mediated endothelial cell adhesion and spreading. J Immunol 168(5):2441–2448

    Article  CAS  PubMed  Google Scholar 

  • Fogal V, Zhang L, Krajewski S, Ruoslahti E (2008) Mitochondrial / cell-surface protein p32 / gC1qR as a molecular target in tumor cells and tumor stroma. Can Res 68(17):7210–7219

    Article  CAS  Google Scholar 

  • Fogal V et al (2010) Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol 30(6):1303–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogal V et al (2015) Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction. Oncotarget 6(2):1157–1170

    Article  PubMed  Google Scholar 

  • Ghate NB et al (2019) p32 Is a negative regulator of p53 tetramerization and transactivation. Mol Oncol 13:1976–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghebrehiwet B et al (1994) Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular ‘heads’ of C1q. J Exp Med 179(6):1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B, Lu PD, Zhang W, Keilbaugh SA, Leigh LE, Eggleton P, Reid KB, Peerschke EI (1996) Identification of functional domains on gClQ-R, a cell surface protein that binds to the globular ‘ heads ’ of C1Q, using monoclonal antibodies and synthetic peptides. Hybridoma 15(5):333–42

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B et al (2001) gC1q-R / p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunol Rev 180(180):65–77

    Article  CAS  PubMed  Google Scholar 

  • Ghebrehiwet B, Jesty J, Peerschkey EIB (2002) gC1q-R / p33: structure-function predictions from the crystal structure. Inmunobiology 205:421–432

    Article  CAS  Google Scholar 

  • Ghebrehiwet B, Jesty J, Xu S, Vinayagasundaram R, Vinayagasundaram U, Peerschke EI, Ji Y, Valentino A, Hosszu KK, Mathew S, Joseph K, Kaplan AP (2011) Structure – function studies using deletion mutants identify domains of gC1qR / p33 as potential therapeutic targets for vascular permeability and inflammation. Front Inmunol 2:1–9

    Google Scholar 

  • Ghebrehiwet B et al (2019) The C1q receptors: focus on gC1qR/p33 (C1qBP, p32, HABP-1). Semin Inmunol 45:1–14

    Google Scholar 

  • Ghebrehiwet B et al (2007) The exosporium of B. cereus contains a binding site for gC1qR/p33: implication in spore attachment and/or entry. Exp Med Biol 23(1):1–7

    Google Scholar 

  • Ghebrehiwet B et al (1997) Evidence that the two C1q binding membrane proteins, gC1q-R and cC1q-R, associate to form a complex. J Immunol 159(3):1429–36

    CAS  PubMed  Google Scholar 

  • Ghosh I, Chowdhury AR, Rajeswari MR, Datta K (2004) Differential expression of hyaluronic acid binding protein 1 (HABP1)/P32/C1QBP during progression of epidermal carcinoma. Mol Cell Biochem 267(1–2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Gotoh K et al (2018) Mitochondrial p32/C1qbp is a critical regulator of dendritic cell metabolism and maturation. Cell Rep 25(7):1800-1815.e4. https://doi.org/10.1016/j.celrep.2018.10.057

    Article  CAS  PubMed  Google Scholar 

  • Guo N et al (1997) Assignment of C1QBP encoding the C1 Q globular domain binding protein (gCIq-R) to human chromosome 17 Band p13. 3 by in situ hybridization. Cytogenet Cell Genet 77:283–284

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Batchu RB, Datta K (1991) Purification, partial characterization of rat kidney hyaluronic acid binding protein and its localization on the cell surface. Eur J Cell Biol 56(58):67

    Google Scholar 

  • Herwald H et al (1996) Isolation and characterization of the kininogen-binding protein p33 from endothelial cells: identity with the gClq receptor. J Biol Chem 271(22):13040–13047

    Article  CAS  PubMed  Google Scholar 

  • Heyd F, Carmo-Fonseca M, Möröy T (2008) Differential isoform expression and interaction with the p32 regulatory protein controls the subcellular localization of the splicing factor U2AF26. J Biol Chem 283(28):19636–19645

    Article  CAS  PubMed  Google Scholar 

  • Honoré B et al (1993) Cloning and expression of a cDNA covering the complete coding region of the P32 subunit of human pre-M RNA splicing factor SF2. Gene 134(2):283–287

    Article  PubMed  Google Scholar 

  • Hosszu KK et al (2012) DC-SIGN, C1q, and gC1qR Form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood 120(6):1228–1236. https://doi.org/10.1182/blood-2011-07-369728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MJ et al (2013) P32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival. Biochem J 453(3):381–391

    Article  CAS  PubMed  Google Scholar 

  • Huang LJ et al (2008) Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells. Invest Ophthalmol Vis Sci 49(12):5243–5249

    Article  PubMed  Google Scholar 

  • Hunt H et al (2017) Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J Control Release 260:142–153. https://doi.org/10.1016/j.jconrel.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayarajan J et al (2020) Curcumin induces chemosensitization to doxorubicin in Duke’s type B coloadenocarcinoma cell line. Mol Biol Rep 47(10):7883–7892. https://doi.org/10.1007/s11033-020-05866-w

    Article  CAS  PubMed  Google Scholar 

  • Jha BK, Salunke DM, Datta K (2002) Disulfide bond formation through Cys186 facilitates functionally relevant dimerization of trimeric hyaluronan-binding protein 1 (HABP1)/p32/gC1qR. Eur J Biochem 269(1):298–306

    Article  CAS  PubMed  Google Scholar 

  • Jha BK, Salunke DM, Datta K (2003) Structural flexibility of multifunctional HABP1 may be important for regulating its binding to different ligands. J Biol Chem 278(30):27464–27472

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang Y, Krainer AR, Xu RM (1999) Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 96(7):3572–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao H et al (2015) Chaperone-like protein p32 regulates ULK1 stability and autophagy. Cell Death Differ 22(11):1812–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Datta K (2006) Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with cisplatin induced apoptosis. Apoptosis 11(5):861–874

    Article  CAS  PubMed  Google Scholar 

  • Kandov E et al (2018) C1q and C1q receptors (gC1qR and cC1qR) as potential novel targets for therapy against breast cancer. Curr Trends Immunol 19:59–76

    CAS  Google Scholar 

  • Kanki T et al (2004) Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 24(22):9823–9834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul R et al (2012) Overexpression of hyaluronan-binding protein 1 (HABP1/p32/gC1qR) in HepG2 cells leads to increased hyaluronan synthesis and cell proliferation by up-regulation of cyclin D1 in AKT-dependent pathway. J Biol Chem 287(23):19750–19764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KB et al (2011) Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem 286(26):23093–23101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BC et al (2016) Antibody neutralization of cell-surface gC1qR/HABP1/SF2-p32 prevents lamellipodia formation and tumorigenesis. Oncotarget 7(31):49972–49985

    Article  PubMed  PubMed Central  Google Scholar 

  • Kittlesen DJ et al (2000) Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Investig 106(10):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krainer AR, Mayeda A, Kozak D, Binns G (1991) Functional Expression of cloned human splicing factor SF2: homology to RNA-binding proteins, Ul 70K, and drosophila splicing regulators. Cell 66:383–394

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wan OW, Xie W, Chung KKK (2011) P32 regulates mitochondrial morphology and dynamics through parkin. Neuroscience 199:346–358

    Article  CAS  PubMed  Google Scholar 

  • Li K et al (2015) ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 6(35):38107–38126

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebert MA et al (2002) Evidence for the presence of HABP1 pseudogene in multiple locations of mammalian genome. DNA Cell Biol 21(10):727–735

    Article  Google Scholar 

  • Lim BL et al (1996) The binding protein for globular heads of complement C1q, gC1qR: functional expression and characterization as a novel vitronectin binding factor. J Biol Chem 271(43):26739–26744

    Article  CAS  PubMed  Google Scholar 

  • Lim B-L et al (1998) Characterization of the murine gene of gC1qBP, a novel cell protein that binds the globular heads of C1q, vitronectin, high molecular weight kininogen and factor XII 1. Gene 209:229–237

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2017) P32 heterozygosity protects against age-and diet-induced obesity by increasing energy expenditure. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-06209-9

    Article  CAS  Google Scholar 

  • Lu PD, Galanakis DK, Ghebrehiwet B, Peerschke EIB (1999) The receptor for the globular ‘heads’ of C1q, gC1q-R, binds to fibrinogen/fibrin and impairs its polymerization. Clin Immunol 90(3):360–367

    Article  CAS  PubMed  Google Scholar 

  • Lynch NJ et al (1997) Characterisation of the rat and mouse homologues of gClqBP, a 33 kDa glycoprotein that binds to the globular heads of Clq. FEBS Lett 418(1–2):111–114. https://doi.org/10.1016/S0014-5793(97)01348-3

    Article  CAS  PubMed  Google Scholar 

  • Ma J et al (2019) The expression pattern of p32 in sheep muscle and its role in differentiation, cell proliferation, and apoptosis of myoblasts. Int J Mol Sci 20(5161):1–18

    Google Scholar 

  • Majumdar M, Datta K (1998) Assignment of cDNA encoding hyaluronic acid-binding protein 1 to human chromosome 17p12 – p13. Genomics 51:476–477

    Article  CAS  PubMed  Google Scholar 

  • Majumdar M, Meenakshi J, Datta K, Goswami SK (2002) Hyaluronan binding protein 1 (HABP1)/c1qbp/p32 Is an endogenous substrate for MAP kinase and is translocated to the nucleus upon mitogenic stimulation. Biochem Biophys Res Commun 291(4):829–837

    Article  CAS  PubMed  Google Scholar 

  • Mallick J, Datta K (2005) HABP1/p32/gC1qR induces aberrant growth and morphology in schizosaccharomyces pombe through its N-terminal α helix. Exp Cell Res 309(2):250–263

    Article  CAS  PubMed  Google Scholar 

  • Rao CM, Deb TB, Datta K (1996) Hyaluronic acid induced hyaluronic binding protein phosphorylation and inositol triphosphate formation in lymphocytes. Biochem Mol Biol Int 40(2):327–337

    CAS  PubMed  Google Scholar 

  • Matthews DA, Russell WC (1998) Adenovirus core protein V interacts with p32 – a protein which is associated with both the mitochondria and the nucleus. J Gen Virol 79:1677–1685

    Article  CAS  PubMed  Google Scholar 

  • McGee AM et al (2011) The mitochondrial protein C1qbp promotes cell proliferation, migration and resistance to cell death. Cell Cycle 10(23):4119–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee A, Baineswe CP (2011) Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death. Biochem J 433(1):119–25

    Article  CAS  PubMed  Google Scholar 

  • Meenakshi J, Anupama, Goswami SK, Datta K (2003) Constitutive expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR) in normal fibroblast cells perturbs its growth characteristics and induces apoptosis. Biochem Biophys Res Commun 300(3):686–93

    Article  CAS  PubMed  Google Scholar 

  • Mohan KV, Krishna BG, Atreya CD (2002) The N-terminal conserved domain of rubella virus capsid interacts with the C-terminal region of cellular p32 and overexpression of p32 enhances the viral infectivity. Virus Res 85(2):151–161

    Article  CAS  PubMed  Google Scholar 

  • Muta T et al (1997) p32 protein, a splicing factor 2-associated protein, is localized in mitochondrial matrix and is functionally important in maintaining oxidative phosphorylation *. J Biol Chem 272(39):24363–24370

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Ghebrehiwet B, Peerschke EIB (2000) Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 68(4):2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu M et al (2015) Elevated expression of HABP1 is correlated with metastasis and poor survival in breast cancer patients. Am J Cancer Res 5(3):1190–98

    PubMed  PubMed Central  Google Scholar 

  • Noh S et al (2020) p32/C1QBP regulates OMA1-dependent proteolytic processing of OPA1 to maintain mitochondrial connectivity related to mitochondrial dysfunction and apoptosis. Sci Rep 10(1):1–16. https://doi.org/10.1038/s41598-020-67457-w

    Article  CAS  Google Scholar 

  • Peerschke EIB, Ghebrehiwet B (2014) cC1qR / CR and gC1qR / p33: observations in cancer. Mol Immunol 61(2):100–109. https://doi.org/10.1016/j.molimm.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  • Peerschke EIB, Brandwijk RJM, Dembitzer FR, Kinoshita Y, Ghebrehiwet B (2015) Soluble gC1qR in blood and body fluids: examination in a pancreatic cancer patient cohort. Int J Cancer Res Mol Mech 1(3):1–5

    Google Scholar 

  • Peerschke E et al (2020a) gC1qR/HABP1/p32 Is a potential new therapeutic target against mesothelioma. Front Oncol 10:1–10

    Article  Google Scholar 

  • Peerschke E et al (2020b) Anti gC1qR/p32/HABP1 antibody therapy decreases tumor growth in an orthotopic murine xenotransplant model of triple negative breast cancer. Antibodies 9(4):51

    Article  CAS  PubMed Central  Google Scholar 

  • Petersen-Mahrt SK et al (1999) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18(4):1014–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash M et al (2011) Hyaluronan-binding protein 1 (HABP1/p32/gC1qR) induces melanoma cell migration and tumor growth by NF-Kappa B dependent MMP-2 activation through integrin α vβ 3 interaction. Cell Signal 23(10):1563–1577. https://doi.org/10.1016/j.cellsig.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  • Raschdorf A et al (2021) Heterozygous P32/C1QBP/HABP1 polymorphism rs56014026 reduces mitochondrial oxidative phosphorylation and is expressed in low-grade colorectal carcinomas. Front Oncol 10:1–17

    Article  Google Scholar 

  • Reef S, Shifman O, Oren M, Kimchi A (2007) The autophagic inducer smARF interacts with and is stabilized by the mitochondrial p32 protein. Oncogene 26(46):6677–6683

    Article  CAS  PubMed  Google Scholar 

  • Robles-Flores M et al (2002) p32 (gC1qBP) Is a general protein kinase C (PKC)-binding protein. Interaction and cellular localization of p32-PKC complexes in rat hepatocytes. J Biol Chem 277(7):5247–5255

    Article  CAS  PubMed  Google Scholar 

  • Rousso-Noori L et al (2021) P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nat Commun 12(1):1–13. https://doi.org/10.1038/s41467-021-23817-2

    Article  CAS  Google Scholar 

  • Rozanov DV et al (2002) The Hemopexin-like C-terminal domain of membrane type 1 matrix metalloproteinase regulates proteolysis of a multifunctional protein, gC1qR. J Biol Chem 277(11):9318–9325

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein DB et al (2004) Receptor for the globular heads of C1q (gC1q-R, p33, hyaluronan-binding protein) Is preferentially expressed by adenocarcinoma cells. Int J Cancer 110(5):741–750

    Article  CAS  PubMed  Google Scholar 

  • Saha S et al (2019) Systematic multiomics analysis of alterations in C1QBP mRNA expression and relevance for clinical outcomes in cancers. J Clin Med 8(513):1–16

    Google Scholar 

  • Saha P, Datta K (2018) Multifuctional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 9(12):10784–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito T et al (2017) Cardiomyocyte-specific loss of mitochondrial p32/C1qbp causes cardiomyopathy and activates stress responses. Cardiovasc Res 113(10):1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Martín D et al (2011) The multicompartmental p32/gClqR as a new target for antibody-based tumor targeting strategies. J Biol Chem 286(7):5197–5203

    Article  PubMed  CAS  Google Scholar 

  • Satarupa D, Deb TB, Kumar R, Datta K (1997) Multifunctional activities of human fibroblast 34-kDa hyaluronic acid-binding protein. Gene 190(1):223–225

    Article  Google Scholar 

  • Schaerer MT et al (2001) Interaction between GABAA receptor β subunits and the multifunctional protein gC1q-R. J Biol Chem 276(28):26597–26604

    Article  CAS  PubMed  Google Scholar 

  • Seytter T, Lottspeich F, Neupert W, Schwarz E (1998) Mam33p, an oligomeric, acidic protein in the mitochondrial matrix of saccharomyces cerevisiae is related to the human complement receptor gC1q-R. Yeast 14:303–310

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Fang W, Liu M, Deliang Fu (2017) Complement component 1, Q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling. Int J Cancer 141(7):1389–1401

    Article  CAS  PubMed  Google Scholar 

  • Simos G, Georgatos SD (1994) The lamin B receptor-associated protein p34 shares sequence homology and antigenic determinants with the splicing factor 2-associated protein p32. FEBS Lett 346(2–3):225–228

    CAS  PubMed  Google Scholar 

  • Sinha S et al (2021) p32 promotes melanoma progression and metastasis by targeting EMT markers, Akt/PKB pathway, and tumor microenvironment. Cell Death Dis 12(11):1–12

    Article  CAS  Google Scholar 

  • Storz P et al (2000) Protein kinase C μ Is regulated by the multifunctional chaperon protein p32. J Biol Chem 275(32):24601–24607

    Article  CAS  PubMed  Google Scholar 

  • Sunayama J et al (2004) Physical and functional interaction between BH3-only protein Hrk and mitochondrial pore-forming protein p32. Cell Death Differ 11(7):771–781

    Article  CAS  PubMed  Google Scholar 

  • Sünderhauf A et al (2020) GC1qR cleavage by caspase-1 drives aerobic glycolysis in tumor cells. Front Oncol 10:1–16

    Article  Google Scholar 

  • Sünderhauf A et al (2021) Loss of mucosal p32/gC1qR/HABP1 triggers energy deficiency and impairs goblet cell differentiation in ulcerative colitis. Cell Mol Gastroenterol Hepatol 12(1):229–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tange TØ, Jensen TH, Kjems J (1996) In vitro interaction between human immunodeficiency virus type 1 rev protein and splicing factor ASF/SF2-associated protein, p32. J Biol Chem 271(17):10066–10072

    Article  CAS  PubMed  Google Scholar 

  • Timur SS et al (2017) Molecular dynamics, thermodynamic, and mutational binding studies for tumor-specific LyP-1 in complex with p32. J Biomol Struct Dyn 36(5):1134–1144. https://doi.org/10.1080/07391102.2017.1313779

    Article  CAS  PubMed  Google Scholar 

  • Waggoner SN, Cruise MW, Kassel R, Hahn YS (2005) gC1q receptor ligation selectively down-regulates human IL-12 production through activation of the phosphoinositide 3-kinase pathway. J Immunol 175(7):4706–4714

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Finan JE, Middeldorp JM, Diane Hayward S (1997) P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr Virus. Virology 236(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Wang JT et al (2014) Impaired p32 regulation caused by the lymphoma-prone RECQ4 mutation drives mitochondrial dysfunction. Cell Rep 7(3):848–858. https://doi.org/10.1016/j.celrep.2014.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Ji et al (2015) Elevated expression of HABP1 is a novel prognostic indicator in triple-negative breast cancers. Tumor Biol 36(6):4793–4799

    Article  CAS  Google Scholar 

  • Watthanasurorot A, Jiravanichpaisal P, Söderhäll K, Söderhäll I (2013) A calreticulin/gC1qR complex prevents cells from dying: a conserved mechanism from arthropods to humans. J Mol Cell Biol 5(2):120–131

    Article  CAS  PubMed  Google Scholar 

  • Wu H et al (2021) Hypoxia-mediated complement 1q binding protein regulates metastasis and chemoresistance in triple-negative breast cancer and modulates the PKC-NF-κB-VCAM-1 signaling pathway. Front Cell Dev Biol 9:1–21

    CAS  Google Scholar 

  • Wu H et al (2013) Human RNase H1 is associated with protein P32 and is involved in mitochondrial pre-rRNA processing. PLoS One 8(8):e71006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao K et al (2014) P32, a novel binding partner of Mcl-1, positively regulates mitochondrial Ca2+ uptake and apoptosis. Biochem Biophys Res Commun 451(2):322–328. https://doi.org/10.1016/j.bbrc.2014.07.122

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Hirasawa A, Shinoura H, Tsujimoto G (1999) Interaction of the α(1B)-adrenergic receptor with gC1q-R, a multifunctional protein. J Biol Chem 274(30):21149–21154

    Article  CAS  PubMed  Google Scholar 

  • Xu J et al (2020a) Globular C1q receptor (gC1qR/p32/HABP1) suppresses the tumor-inhibiting role of C1q and promotes tumor proliferation in 1q21-amplified multiple myeloma. Front Immunol 11:1–17

    Article  CAS  Google Scholar 

  • Xu W et al (2020b) LyP-1-modified oncolytic adenoviruses targeting transforming growth factor β inhibit tumor growth and metastases and augment immune checkpoint inhibitor therapy in breast cancer mouse models. Hum Gene Ther 31(15–16):863–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav G et al (2009) Evidence for inhibitory interaction of hyaluronan-binding protein 1 (HABP1/p32/gC1 qR) with streptococcus pneumoniae hyaluronidase. J Biol Chem 284(6):3897–3905

    Article  CAS  PubMed  Google Scholar 

  • Yagi M et al (2012) P32/gC1qR is indispensable for fetal development and mitochondrial translation: importance of its RNA-binding ability. Nucleic Acids Res 40(19):9717–9737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yenugonda V et al (2017) A novel small molecule inhibitor of p32 mitochondrial protein overexpressed in glioma. J Transl Med 15(1):1–12

    Article  CAS  Google Scholar 

  • Yoshikawa H et al (2011) Splicing factor 2-associated protein p32 participates in ribosome biogenesis by regulating the binding of Nop52 and fibrillarin to preribosome particles. Mol Cell Proteomics 10(8):1–23

    Article  CAS  Google Scholar 

  • Yu G, Wang J (2013) Significance of hyaluronan binding protein (HABP1/P32/gC1qR) expression in advanced serous ovarian cancer patients. Exp Mol Pathol 94(1):210–215

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Loewenstein PM, Zhang Z, Green M (1995) In vitro interaction of the human immunodeficiency virus type 1 Tat transactivator and the general transcription factor TFIIB with the cellular protein TAP. J Virol 69(5):3017–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2013) Interactome analysis reveals that C1QBP (complement component 1, Q subcomponent binding protein) is associated with cancer cell chemotaxis and metastasis. Mol Cell Proteomics 12(11):3199–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M et al (2017) Hyaluronic acid binding protein 1 overexpression is an indicator for disease-free survival in cervical cancer. Int J Clin Oncol 22(2):347–352

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liu T, Ge Yu, Wang J (2015) Overexpression of HABP1 correlated with clinicopathological characteristics and unfavorable prognosis in endometrial cancer. Tumor Biol 36(2):1299–1306

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by grants from Universidad Nacional Autónoma de México (DGAPA-UNAM IV200220 and IN229420) and from CONACYT (FOSSIS 2017–289600).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and approved it for publication. Specifically, their contributions were: Conceptualization, investigation, and figure design: CAEA; writing and editing, MR-F. The first draft of the manuscript was written by CAEA and the final writing and editing was performed by MRF. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Martha Robles-Flores.

Ethics declarations

Conflict of interest

The authors declare that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egusquiza-Alvarez, C.A., Robles-Flores, M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 148, 1831–1854 (2022). https://doi.org/10.1007/s00432-022-04001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04001-5

Keywords

Navigation