Skip to main content

Advertisement

Log in

Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation: from mechanism analysis to clinical strategy

  • Review – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Non-small cell lung cancer (NSCLC) accounts for about 85% in all cases of lung cancer. In recent years, molecular targeting drugs for NSCLC have been developed rapidly. The epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have changed the paradigm of cancer therapy from empirical cytotoxic chemotherapy to molecular-targeted cancer therapy. Currently, there are three generations of EGFR-TKIs, all of which have achieved good efficacy in clinical therapy. However, most patients developed drug resistance after 6–13 months EGFR-TKIs treatment. Therefore, a comprehensive understanding of EGFR-TKIs resistance mechanisms is of vital importance for clinical management of NSCLC.

Methods

Relevant data and information about the topic were obtained by searching PubMed (Medline), Web of Science and Google Scholar using the subject headings, such as “NSCLC”, “EGFR-TKIs resistance”, “EGFR mutations”, “human epidermal growth factor receptor-2 (HER2/erbB-2)”, “hepatocyte growth factor (HGF)”, “vascular endothelial growth factor (VEGF)”, “insulin-like growth factor 1 (IGF-1)”, “epithelial–mesenchymal transition (EMT)”, “phosphatase and tensin homolog (PTEN)”, “RAS mutation”, “BRAF mutation”, “signal transducer and activator of transcription 3 (STAT3)”, and “tumor microenvironment”, etc.

Results

The mechanisms for EGFR-TKIs resistance include EGFR mutations, upregulation of HER2, HGF/c-MET, VEGF IGF1, EMT and STAT3 pathways, mutations of PTEN, RAS and BRAF genes, and activation of other by-pass pathways. These mechanisms are interconnected and can be potential targets for the treatment of NSCLC.

Conclusion

In this review, we discuss the mechanisms of EGFR-TKIs drug resistance and the clinical strategies to overcome drug resistance from the perspective of EGFR-TKIs combined treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Apicella M et al (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28:848−865

    Article  CAS  Google Scholar 

  • Balak MN et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor—mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501

    Article  CAS  PubMed  Google Scholar 

  • Bean J et al (2008) Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 14:7519–7525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bivona TG et al (2011) FAS and NF-kappa B signalling modulate dependence of lung cancers on mutant EGFR. Nature 471:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakely CM et al (2015) NF-kappa B-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 11:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona AF et al (2017) Acquired resistance to erlotinib in EGFR mutation-positive lung adenocarcinoma among Hispanics (CLICaP). Target Oncol 12:513–523

    Article  PubMed  Google Scholar 

  • Chaib I et al (2017) Co-activation of STAT3 and YES-associated protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC. J Nat Cancer Instit 109. https://doi.org/10.1093/jnci/djx014

    Article  Google Scholar 

  • Chang MH et al (2011) Clinical impact of amphiregulin expression in patients with epidermal growth factor receptor (EGFR) wild-type nonsmall cell lung cancer treated with EGFR-tyrosine kinase inhibitors. Cancer 117:143–151

    Article  CAS  PubMed  Google Scholar 

  • Chin AR, Wang SE (2016) Cancer-derived extracellular vesicles: the ‘soil conditioner’ in breast cancer metastasis? Cancer Metastasis Rev 35:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JM, Hurwitz HI (2013) Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther 13:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross DAE et al (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day TF et al (2019) Dual targeting of EGFR and IGF1R in the TNFAIP8 knockdown non-small cell lung cancer cells. Mol Cancer Res 17:1207–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Langen AJ et al (2018) Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment. Br J Cancer 119:558–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denduluri SK et al (2015) Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2:13–25

    Article  PubMed  Google Scholar 

  • Devery AM et al (2015) Vascular endothelial growth factor directly stimulates tumour cell proliferation in non-small cell lung cancer. Int J Oncol 47:849–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J et al (2010) Polymorphisms in EGFR and VEGF contribute to non-small-cell lung cancer survival in a Chinese population. Carcinogenesis 31:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Eberlein CA et al (2015) Acquired resistance to the mutant-selective EGFR Inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res 75:2489–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Frydrychowicz M et al (2017) The dual role of Treg in cancer. Scand J Immunol 86:436–443

    Article  CAS  PubMed  Google Scholar 

  • Furuyama K et al (2013) Sensitivity and kinase activity of epidermal growth factor receptor (EGFR) exon 19 and others to EGFR-tyrosine kinase inhibitors. Cancer Sci 104:584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkountakos A et al (2019) PTEN in lung cancer: dealing with the problem, building on new knowledge and turning the game around. Cancers 11:1141. https://doi.org/10.3390/cancers11081141

    Article  CAS  PubMed Central  Google Scholar 

  • Gong K et al (2018) TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Investig 128:2500–2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong WJ et al (2019) STAT3 rs4796793 contributes to lung cancer risk and clinical outcomes of platinum-based chemotherapy. Int J Clin Oncol 24:476–484

    Article  CAS  PubMed  Google Scholar 

  • Guerard M et al (2018) Nuclear translocation of IGF1R by intracellular amphiregulin contributes to the resistance of lung tumour cells to EGFR-TKI. Cancer Lett 420:146–155

    Article  CAS  PubMed  Google Scholar 

  • Han BH et al (2017) Combination of chemotherapy and gefitinib as first-line treatment for patients with advanced lung adenocarcinoma and sensitive EGFR mutations: a randomized controlled trial. Int J Cancer 141:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Hasako S et al (2018) TAS6417, a novel EGFR inhibitor targeting Exon 20 insertion mutations. Mol Cancer Ther 17:1648–1658

    Article  CAS  PubMed  Google Scholar 

  • Ho CC et al (2017) Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J Thorac Oncol 12:567–572

    Article  PubMed  Google Scholar 

  • Hong DS et al (2020) KRAS (G12C) inhibition with sotorasib in advanced solid tumors. N Engl J Med 383:1207–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins BD et al (2013) A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 341:399–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosomi Y et al (2019) Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 Study. J Clin Oncol 38:115−123

    PubMed  Google Scholar 

  • Hu YS et al (2019) STAT3: a potential drug target for tumor and inflammation. Curr Top Med Chem 19:1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Huang LH, Fu LW (2015) Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharmaceutica Sinica B 5:390–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Im JS et al (2016) Immune-modulation by epidermal growth factor receptor inhibitors: implication on anti-tumor immunity in lung cancer. PLoS ONE 11:e0160004. https://doi.org/10.1371/journal.pone.0160004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y et al (2016) Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534:129−134

    Article  CAS  Google Scholar 

  • Jia YJ et al (2019) EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies. Int J Cancer 145:1432–1444

    Article  CAS  PubMed  Google Scholar 

  • Jin G et al (2010) PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer 69:279–283

    Article  PubMed  Google Scholar 

  • Jin Y et al (2018) Mechanisms of primary resistance to EGFR targeted therapy in advanced lung adenocarcinomas. Lung Cancer 124:110–116

    Article  PubMed  Google Scholar 

  • Ke EE et al (2017) A higher proportion of the EGFR T790M mutation may contribute to the better survival of patients with exon 19 deletions compared with those with L858R. J Thorac Oncol 12:1368–1375

    Article  PubMed  Google Scholar 

  • Kempf E et al (2016) KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur Respir Rev

  • Kobayashi S et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  • Kon S et al (2014) Altered trafficking of mutated growth factor receptors and their associated molecules: implication for human cancers. Cell Logist 4:e28461. https://doi.org/10.4161/cl.28461

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong FF et al (2014) FOXM1 regulated by ERK pathway mediates TGF-beta 1-induced EMT in NSCLC. Oncol Res 22:29–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosaka T et al (2006) Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 12:5764–5769

    Article  CAS  PubMed  Google Scholar 

  • Kurimoto R et al (2016) Drug resistance originating from a TGF-beta/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol 48:1825–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen AK et al (2011) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131:80–90

    Article  CAS  PubMed  Google Scholar 

  • Le X et al (2021) ARTEMIS highlights VEGF inhibitors as effective partners for EGFR TKIs in EGFR mutant NSCLC. Cancer Cell 39:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Lee DH (2017) Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): the road to a success, paved with failures. Pharmacol Ther 174:1–21

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ et al (2014) Drug resistance via feedback activation of stat3 in oncogene-addicted cancer cells. Cancer Cell 26:207–221

    Article  CAS  PubMed  Google Scholar 

  • Lee Y et al (2016) Inhibition of IGF1R signaling abrogates resistance to afatinib (BIBW2992) in EGFR T790M mutant lung cancer cells. Mol Carcinog 55:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Lei L et al (2020) Potential mechanism of primary resistance to icotinib in patients with advanced non-small cell lung cancer harboring uncommon mutant epidermal growth factor receptor: a multi-center study. Cancer Sci 111:679–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Sethi G (2010) Targeting transcription factor NF-kappa B to overcome chemoresistance and radioresistance in cancer therapy. Biochimica Biophysica Acta Rev Cancer 1805:167–180

    Article  CAS  Google Scholar 

  • Li F et al (2017) Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance. Eur J Cancer 84:184–192

    Article  CAS  PubMed  Google Scholar 

  • Li HX, et al (2021) MicroRNA-103a-3p promotes cell proliferation and invasion in non-small-cell lung cancer cells through akt pathway by targeting PTEN. Biomed Res Int 7590976. https://doi.org/10.1155/2021/7590976

  • Liu ZD et al (2019) Hypofractionated EGFR tyrosine kinase inhibitor limits tumor relapse through triggering innate and adaptive immunity. Sci Immunol 38. https://doi.org/10.1126/sciimmunol.aav6473

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda M et al (2015) CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer 87:265–271

    Article  PubMed  Google Scholar 

  • Martinelli E et al (2017) Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev 53:61–69

    Article  CAS  PubMed  Google Scholar 

  • Mascia F et al (2016) Cell autonomous or systemic EGFR blockade alters the immune-environment in squamous cell carcinomas. Int J Cancer 139:2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok TS et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  • Molina JR et al (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Article  PubMed  Google Scholar 

  • Murakami A et al (2014) Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS ONE

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa K et al (2019) Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20:1655–1669

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K et al (2021) Trastuzumab deruxtecan in HER2-overexpressing metastatic non-small cell lung cancer: interim results of DESTINY-Lung01. J Thorac Oncol 16:S109–S110

    Article  Google Scholar 

  • Negrao MV et al (2020) Molecular landscape of BRAF-mutant NSCLC reveals an association between clonality and driver mutations and identifies targetable non-V600 driver mutations. J Thorac Oncol 15:1611–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noro R et al (2007) PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int J Oncol 31:1157–1163

    CAS  PubMed  Google Scholar 

  • Noronha V et al (2019) Phase III randomized trial comparing gefitinib to gefitinib with pemetrexed-carboplatin chemotherapy in patients with advanced untreated EGFR mutant non-small cell lung cancer (gef vs gef plus C). J Clin Oncol 37. https://doi.org/10.1200/JCO.2019.37.15_suppl.9001

    Article  PubMed  Google Scholar 

  • Ohashi K et al (2012) Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci USA 109:E2127–E2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okura N et al (2020) ONO-7475, a Novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res 26:2244–2256

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2019) A Ras destabilizer KYA1797K overcomes the resistance of EGFR tyrosine kinase inhibitor in KRAS-mutated non-small cell lung cancer. Sci Rep. https://doi.org/10.1038/s41598-018-37059-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Pau ECD et al (2009) Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer. Cancer 115:1701–1712

    Article  Google Scholar 

  • Poggio M et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177:414−427

    Article  CAS  Google Scholar 

  • Qian X et al (2016) Circulating cell-free DNA has a high degree of specificity to detect exon 19 deletions and the single-point substitution mutation L858R in non-small cell lung cancer. Oncotarget 7:29154–29165

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebuzzi SE et al (2020) Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: review of the literature and future perspectives. Crit Rev Oncol Hematol 146:102820. https://doi.org/10.1016/j.critrevonc.2019.102820

    Article  PubMed  Google Scholar 

  • Rotow J, Bivona TG (2017) Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer 17:637–658

    Article  CAS  PubMed  Google Scholar 

  • Saito H et al (2019) Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 20:625–635

    Article  CAS  PubMed  Google Scholar 

  • Scrima M et al (2017) Aberrant signaling through the HER2-ERK1/2 pathway is predictive of reduced disease-free and overall survival in early stage non- small cell lung cancer (NSCLC) patients. J Cancer 8:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshacharyulu P et al (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto T et al (2006) Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer 53:91–96

    Article  PubMed  Google Scholar 

  • Seto T et al (2014) Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 15:1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Shigematsu H, Gazdar AF (2006) Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 118:257–262

    Article  CAS  PubMed  Google Scholar 

  • Shtiegman K et al (2007) Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26:6968–6978

    Article  CAS  PubMed  Google Scholar 

  • Sierra JR, Tsao M-S (2011) c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 3:S21–S35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YA et al (2019) Apatinib preferentially inhibits PC9 gefitinib-resistant cancer cells by inducing cell cycle arrest and inhibiting VEGFR signaling pathway. Cancer Cell Int 19:117. https://doi.org/10.1186/s12935-019-0836-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Spigel DR et al (2013) Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 31:4105–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam D et al (2014) Irreversible multitargeted ErbB family inhibitors for therapy of lung and breast cancer. Curr Cancer Drug Targets 14:775–793

    Article  CAS  Google Scholar 

  • Suda K et al (2011) Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol 6:1152–1161

    Article  PubMed  Google Scholar 

  • Sun B et al (2021) MicroRNA-25-3p promotes cisplatin resistance in non-small-cell lung carcinoma (NSCLC) through adjusting PTEN/PI3K/AKT route. Bioengineered 12:3219–3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanton C et al (2006) Her2-targeted therapies in non-small cell lung cancer. Clin Cancer Res 12:4377S-4383S

    Article  CAS  PubMed  Google Scholar 

  • Takezawa K et al (2012) HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFR(T790M) mutation. Cancer Discov 2:922–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan CS et al (2018) Third generation EGFR TKIs: current data and future directions. Mol Cancer 17:29. https://doi.org/10.1186/s12943-018-0778-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang YN et al (2015) The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget 6:14209–14219

    Article  PubMed  PubMed Central  Google Scholar 

  • Teresi RE et al (2006) Increased PTEN expression due to transcriptional activation of PPAR gamma by Lovastatin and Rosiglitazone. Int J Cancer 118:2390–2398

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajan PS et al (2016) Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGF beta 2-bioenergetics-mitochondrial priming. Oncotarget 7:82013–82027

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian HX et al (2017) Establishment of a novel method for screening epidermal growth factor receptor tyrosine kinase inhibitor resistance mutations in lung cancer. Chin Med J 130:1446–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissot C et al (2016) Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations. Lung Cancer 91:23–28

    Article  PubMed  Google Scholar 

  • Tonra JR et al (2006) Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin Cancer Res 12:2197–2207

    Article  CAS  PubMed  Google Scholar 

  • Trojaniello C et al (2019) Encorafenib in combination with binimetinib for unresectable or metastatic melanoma with BRAF mutations. Expert Rev Clin Pharmacol 12:259–266

    Article  CAS  PubMed  Google Scholar 

  • Tu NN et al (2015) BRAF alterations as therapeutic targets in non-small-cell lung cancer. J Thorac Oncol 10:1396–1403

    Article  CAS  Google Scholar 

  • Wang SH et al (2016) Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3 beta/Foxp3 Axis. J Biol Chem 291:21085–21095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QM et al (2019) MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J Hematol Oncol 12:63. https://doi.org/10.1186/s13045-019-0759-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Werner H et al (2019) Investigational IGF1R inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs 28:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL et al (2008) Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27:3944–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HS et al (2014) Epidermal growth factor receptor (EGFR) exon 20 mutations in non-small-cell lung cancer and resistance to EGFR-tyrosine kinase inhibitors. Invest New Drugs 32:1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Wu YL et al (2015) First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol 26:1883–1889

    Article  PubMed  Google Scholar 

  • Wu YL et al (2017) Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 18:1454–1466

    Article  CAS  PubMed  Google Scholar 

  • Xue YJ et al (2017) Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance. Protein Cell 8:178–190

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi F et al (2014a) Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naive patient: a report of three cases. Oncol Lett 7:357–360

    Article  PubMed  Google Scholar 

  • Yamaguchi N et al (2014b) Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer 83:37–43

    Article  PubMed  Google Scholar 

  • Yang J et al (2015) Reciprocal positive regulation between Cx26 and PI3K/Akt pathway confers acquired gefitinib resistance in NSCLC cells via GJIC-independent induction of EMT. Cell Death Dis 6:e1829. https://doi.org/10.1038/cddis.2015.197

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JCH et al (2016) Effect of dose adjustment on the safety and efficacy of afatinib for EGFR mutation-positive lung adenocarcinoma: post hoc analyses of the randomized LUX-Lung 3 and 6 trials. Ann Oncol 27:2103–2110

    Article  PubMed  Google Scholar 

  • Yang Y et al (2017) MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis. Mol Cancer 16:141. https://doi.org/10.1186/s12943-017-0710-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang GJ et al (2020) EGFR exon 20 insertion mutations in Chinese advanced non-small cell lung cancer patients: molecular heterogeneity and treatment outcome from nationwide real-world study. Lung Cancer 145:186–194

    Article  PubMed  Google Scholar 

  • Yano S et al (2008) Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Can Res 68:9479–9487

    Article  CAS  Google Scholar 

  • Yao Z et al (2010) TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci USA 107:15535–15540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda H et al (2012) EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol 13:E23–E31

    Article  CAS  PubMed  Google Scholar 

  • Yochum ZA et al (2019) Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 38:656–670

    Article  CAS  PubMed  Google Scholar 

  • Yu HA et al (2014) Poor response to erlotinib in patients with tumors containing baseline EGFR T790M mutations found by routine clinical molecular testing. Ann Oncol 25:423–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5:288–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-b, Peng F (2017) Expression level of microRNA-21 in peripheral blood and cancer tissues of patients with non-small cell lung cancer and its mechanism of involvement in cancer suppression by regulating PTEN protein. Zhongguo Laonianxue Zazhi 37:5571–5573

    CAS  Google Scholar 

  • Zhang Y et al (2019a) The canonical TGF-beta/Smad signalling pathway is involved in PD-L1-induced primary resistance to EGFR-TKIs in EGFR-mutant non-small-cell lung cancer. Respir Res 20:164. https://doi.org/10.1186/s12931-019-1137-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z et al (2019b) Impact of MET alterations on targeted therapy with EGFR-tyrosine kinase inhibitors for EGFR-mutant lung cancer. Biomark Res 7:27. https://doi.org/10.1186/s40364-019-0179-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JQ et al (2008) Better survival with EGFR exon 19 than exon 21 mutations in gefitinib-treated non-small cell lung cancer patients is due to differential inhibition of downstream signals. Cancer Lett 265:307–317

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Macao Science and Technology Development Fund (070/2017/A2, 0024/2020/A1), the Research Fund of the University of Macau (MYRG2018-00176-ICMS), Macao Young Scholars Program (AM201911) and the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund (Guangdong-Hong Kong-Macau Joint Lab) (2020B1212030006).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Chengwei He.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, H. & He, C. Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation: from mechanism analysis to clinical strategy. J Cancer Res Clin Oncol 147, 3653–3664 (2021). https://doi.org/10.1007/s00432-021-03828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-021-03828-8

Keywords

Navigation