Skip to main content
Log in

Selected ellipticine derivatives, known to target topoisomerase II, suppress the alternative lengthening of telomere (ALT) pathway in telomerase–negative cells

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

DNA topoisomerase and telomerase enzymes are popular targets of several anti-tumor drugs. Smooth proceeding of telomeric recombination requires Topoisomerase II (Top2), which is involved in telomere-telomere recombination through functioning in relaxation of positive supercoils among the cells adopting telomerase-independent Alternative lengthening of telomere (ALT) pathway. Most of the inhibitors reported so far have been designed to targetsolely telomerase-positive cells, which can potentially lead to therapeutic failure because tumor cells treated with telomerase inhibitors can activate the ALT pathway for telomere maintenance. Knowing that ALT cells are more sensitive against a Top2 inhibitor, ICRF-93 agent, compared to telomerase-positive cells, we analyzed two selected ellipticine derivatives that we recently reported as TopII-targeting compounds, to assess their effects on the formation of DNA breaks and suppression of ALT pathway.

Methods

Cell viability, Comet, C-Circle assays, dot blot, immunofluorescence staining, and telomere fluorescence in situ hybridization (FISH) staining were used for determining the effect of the compounds on ALT status of tumor cells.

Results and conclusions

Treatment of ALT cells with ellipticine derivatives resulted in the formation of DNA breaks and suppression of ALT-associated phenotypes in vitro. Our results will contribute to the development of therapeutic strategies combining telomerase and ALT pathway inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basenko E, Topcu Z, McEachern MJ (2011) Recombination can either help maintain very short telomeres or generate longer telomeres via a roll-and-spread mechanism in yeast cells with weak telomerase activity. Eukaryot Cell 10:1131–1142

    Article  CAS  Google Scholar 

  • Blackburn EH (1992) Telomerases. Annu Rev Biochem 61:113–129

    Article  CAS  Google Scholar 

  • Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198

    Article  CAS  Google Scholar 

  • Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  CAS  Google Scholar 

  • Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3:1271–1274

    Article  CAS  Google Scholar 

  • Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319–330

    Article  CAS  Google Scholar 

  • Dar AM, Uzzaman S, Ahmad MS (2017) Steroidal imidazoles: synthesis, characterization, molecular docking studies with DNA and in vitro cytotoxicity. Med Chem Res 26:2372–2383

    Article  Google Scholar 

  • Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26:447–450

    Article  CAS  Google Scholar 

  • Ghosh S, Kar A, Chowdhury S, Dasgupta D (2013) Ellipticine binds to a human telomere sequence: an additional mode of action as a putative anticancer agent? Biochemistry 52:4127–4137

    Article  CAS  Google Scholar 

  • Henson JD, Reddel RR (2010) Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett 584:3800–3811

    Article  CAS  Google Scholar 

  • Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AY, Pickett HA, Reddel RR (2009) DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol 27:1181–1185

    Article  CAS  Google Scholar 

  • Henson JD, Lau LM, Koch S, Martin La Rotta N, Dagg RA, Reddel RR (2017) The C-circle assay for alternative-lenghtening-of-telomeres activity. Methods 114:74–84

    Article  CAS  Google Scholar 

  • Hsieh MH, Tsai CH, Lin CC, Li TK, Hung TW, Chang LT, Hsin LW, Teng SC (2015) Topoisomerase II inhibition suppresses the proliferation of telomerase-negative cancers. Cell Mol Life Sci 72:1825–1837

    Article  CAS  Google Scholar 

  • Huang TH, Chen HC, Chou SM, Yang YC, Fan JR, Li TK (2010) Cellular processing determinants for the activation of damage signals in response to topoisomerase I-linked DNA breakage. Cell Res 20:1060–1075

    Article  CAS  Google Scholar 

  • Isloor AM, Sunil D, Prakash Shetty P, Malladi S, Pai KSR, Maliyakkl N (2013) Synthesis, characterization, anticancer, and antioxidant activity of some new thiazolidin-4-ones in MCF-7 cells. Med Chem Res 22:758–767

    Article  CAS  Google Scholar 

  • Itoh T, Hatae N, Nishiyama T, Choshi T, Hibino S, Yoshimura T, Ishikura M (2018) Synthesis and cytotoxicity of pyrido[4,3-b]carbazole alkaloids against HCT-116 and HL-60 cells. Med Chem Res 27:412–419

    Article  CAS  Google Scholar 

  • Kuskucu AV, Kulmány Á, Ergün Y, Zencir S, Zupko I, Durdagi S, Kader S, Zaka M, Orhan H, Topcu Z (2020) Structural modification of ellipticine derivatives with alkyl groups of varying length is influential on their effects on human DNA topoisomerase II: a combined experimental and computational study. Med Chem Res 29:189–198

    Article  CAS  Google Scholar 

  • Lee CH, Hsieh MY, Hsin LW, Chen HC, Lo SC, Fan JR, Chen WR, Chen HW, Chan NL, Li TK (2012) Anthracenedione-methionine conjugates are novel topoisomerase II-targeting anticancer agents with favorable drug resistance profiles. Biochem Pharmacol 83:1208–1216

    Article  CAS  Google Scholar 

  • Lin CC, Hsieh MH, Teng SC (2016) Genistein suppresses the proliferation of telomerase-negative cells. Food Sci Nutr 5:197–204

    Article  Google Scholar 

  • Lu Y, Leong W, Guerin O, Gilson E, Ye J (2013) Telomeric impact of conventional chemotherapy. Front Med 7:41–417

    Google Scholar 

  • Martines P, Blasco MA (2015) Replicating through telomeres: a means to an end. Trends Biochem Sci 40:504–515

    Article  Google Scholar 

  • McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mut Res 623:83–97

    Article  CAS  Google Scholar 

  • Miller CM, McCarthy FO (2012) Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Adv 2:8883–8918

    Article  CAS  Google Scholar 

  • Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR (2001) Alternative lengthening of telomeres in human cells. Radiat Res 155:194–200

    Article  CAS  Google Scholar 

  • Sarikaya BB, Zencir S, Somer NU, Kaya GI, Onur MA, Bastida J, Zupko I, Topcu Z (2012) The effects of arolycoricidine and narciprimine on tumor cell killing and topoisomerase activity. Rec Nat Prod 6:381–385

    Google Scholar 

  • Sassano MF, Schlesinger AP, Jarstfer MB (2012) Identification of G quadruplex inducers using a simple, inexpensive and rapid high throughput assay, and their inhibition of human telomerase. Open Med Chem J 6:20–28

    Article  CAS  Google Scholar 

  • Shay JW, Reddel RR, Wright WE (2012) Cancer and telomeres–an ALTernative to telomerase. Science 336:1388–1390

    Article  CAS  Google Scholar 

  • Stiborova M, Frei E (2014) Ellipticines as DNA-targeted chemotherapeutics. Curr Med Chem 21:575–591

    Article  CAS  Google Scholar 

  • Teng SC, Chang J, McCowan B, Zakian VA (2000) Telomerase independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell 6:947–952

    Article  CAS  Google Scholar 

  • Topcu Z, Nickles K, Davis C, McEachern M (2005) Abrupt disruption of capping and a single source for recombinationally elongated telomeres in K. Lactis Proc Natl Acad Sci 102:3348–3353

    Article  CAS  Google Scholar 

  • Vann KR, Ergun Y, Zencir S, Oncuoglu S, Osheroff N, Topcu Z (2016) Inhibition of human DNA topoisomerase IIα by two novel ellipticine derivatives. Bioorganic Med Chem Lett 26:1809–1812

    Article  CAS  Google Scholar 

  • Wang JC (1996) DNA topoisomerases. Annu Rev Biochem 65:635–692

    Article  CAS  Google Scholar 

  • Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, Rosenzweig A, Martyn JAJ (2003) Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem 51:873–885

    Article  CAS  Google Scholar 

  • Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhu W, Diao H, Zhou C, Chen FF, Yang J (2006) A comparative study of using comet assay and γH2AX foci formation in the detection of N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage. Toxicol In Vitro 20:959–965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant 115Z349 (Z.T. and S.Z.) from the Turkish Scientific and Technical Research Assembly. The cell lines used in this study were provided by Drs. Shu-Chun Teng and Tsai-Kun Li (College of Medicine, National Taiwan University, Taipei, Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevil Zencir.

Ethics declarations

Conflict of interest

The authors declare no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zencir, S., Hsieh, MH., Hsu, JS. et al. Selected ellipticine derivatives, known to target topoisomerase II, suppress the alternative lengthening of telomere (ALT) pathway in telomerase–negative cells. J Cancer Res Clin Oncol 146, 1671–1676 (2020). https://doi.org/10.1007/s00432-020-03213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-020-03213-x

Keywords

Navigation