Skip to main content

Advertisement

Log in

Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cancer stem cells (CSCs) are highly tumorigenic cell types that reside within specific areas of tumor microenvironment (TME), and are endowed with self-renewal and resistance properties. Here, we aimed to discuss mechanisms involved in hypoxia-derived CSC resistance and targeting for effective cancer therapy.

Results

Preferential localization within hypoxic niches would help CSCs develop adaptive mechanisms, mediated through the modification of responses to various stressors and, as a result, show a more aggressive behavior.

Conclusion

Hypoxia, in fact, serves as a multi-tasking strategy to nurture CSCs with this adaptive capacity, complexing targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abyaneh HS, Gupta N, Alshareef A, Gopal K, Lavasanifar A, Lai R (2018) Hypoxia induces the Acquisition of Cancer Stem-like Phenotype via Upregulation and Activation of signal transducer and activator of Transcription-3 (STAT3) in MDA-MB-231, a triple negative breast Cancer cell line. Cancer Microenviron 11(2–3):141–152

    Article  CAS  Google Scholar 

  • Agnihotri N, Kumar S, Mehta K (2013) Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res 15(1):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alama A, Orengo AM, Ferrini S, Gangemi R (2012) Targeting cancer-initiating cell drug-resistance: a roadmap to a new-generation of cancer therapies? Drug Discov Today 17(9–10):435–442

    Article  CAS  PubMed  Google Scholar 

  • Alipour M, Majidi A, Molaabasi F, Sheikhnejad R, Hosseinkhani S (2018) In vivo tumor gene delivery using novel peptideticles: pH-responsive and ligand targeted core–shell nanoassembly. Int J Cancer 143(8):2017–2028

    Article  CAS  PubMed  Google Scholar 

  • Anuja K, Chowdhury AR, Saha A, Roy S, Rath AK, Kar M, Banerjee B (2019) Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int J Radiat Biol 95(6):667–679

    Article  CAS  PubMed  Google Scholar 

  • Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Balamurugan K (2016) HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 138(5):1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochimica et Biophysica Acta (BBA)-Rev Cancer 1826(2):272–296

    Article  CAS  Google Scholar 

  • Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8(7):545

    Article  CAS  PubMed  Google Scholar 

  • Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13(10):727

    Article  CAS  PubMed  Google Scholar 

  • Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6(8):637

    Article  CAS  PubMed  Google Scholar 

  • Bonnin DA, Havrda M, Lee M, Liu H, Zhang Z, Nguyen L, Harrington L, Hassanpour S, Cheng C, Israel M (2018) Secretion-mediated STAT3 activation promotes self-renewal of glioma stem-like cells during hypoxia. Oncogene 37(8):1107

    Article  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4(6):437

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Lleonart M (2016) The hypoxic microenvironment: a determinant of cancer stem cell evolution. BioEssays 38:S65–S74

    Article  PubMed  Google Scholar 

  • Chen A, Sceneay J, Gödde N, Kinwel T, Ham S, Thompson EW, Humbert PO, Möller A (2018) Intermittent hypoxia induces a metastatic phenotype in breast cancer. Oncogene 37(31):4214–4225

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xu R, Xia J, Huang J, Su B, Wang S (2019) Aspirin inhibits hypoxia-mediated lung cancer cell stemness and exosome function. Pathol Res Pract 215(6):152379

    Article  CAS  PubMed  Google Scholar 

  • Chouaib S, Noman M, Kosmatopoulos K, Curran M (2017) Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36(4):439

    Article  CAS  PubMed  Google Scholar 

  • Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR, Park DM (2017) Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro-Oncol 19(7):887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394

    CAS  PubMed  Google Scholar 

  • Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci 109(8):2784–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley SJ, Baker TL, Burnett JP, Theisen RL, Lazarus D, Peters CG, Clouthier SG, Eliasof S, Wicha MS (2015) CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer. Breast Cancer Res Treat 150(3):559–567

    Article  CAS  PubMed  Google Scholar 

  • Conway JR, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Mélénec P (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep 23(11):3312–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cressey PB, Eskandari A, Bruno PM, Lu C, Hemann MT, Suntharalingam K (2016) The potent inhibitory effect of a naproxen-appended Cobalt (III)-Cyclam complex on cancer stem cells. ChemBioChem 17(18):1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Hódsági J, Korcsmáros T, Módos D, Perez-Lopez ÁR, Szalay K, Veres DV, Lenti K, Wu L-Y, Zhang X-S (2015) Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence. Semin Cancer Biol 30:42–51

    Article  PubMed  Google Scholar 

  • Das B, Pal B, Bhuyan R, Li H, Sarma A, Gayan S, Talukdar J, Sandhya S, Bhuyan S, Gogoi G (2019) MYC regulates the HIF2α stemness pathway via Nanog and Sox2 to maintain self-renewal in cancer stem cells versus non-stem cancer cells. Cancer Res 79(16):4015–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong MC, Jelle J, Grénman R, Wessels LF, Kerkhoven R, te Riele H, van den Brekel MW, Verheij M, Begg AC (2015) Pretreatment microRNA expression impacting on epithelial-to-mesenchymal transition predicts intrinsic radiosensitivity in head and neck cancer cell lines and patients. Clin Cancer Res 21(24):5630–5638

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A (2016) Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 15(1):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong X-F, Liu T-Q, Zhi X-T, Zou J, Zhong J-T, Li T, Mo X-L, Zhou W, Guo W-W, Liu X (2018) COX-2/PGE2 axis regulates HIF2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin Cancer Res 24(13):3204–3216

    Article  CAS  PubMed  Google Scholar 

  • Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM (2019) Rationale for combining radiotherapy and immune checkpoint inhibition for patients with hypoxic tumors. Front Immunol 10:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le Q-T, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhood B, Najafi M, Mortezaee K (2019) CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234(6):8509–8521

    Article  CAS  PubMed  Google Scholar 

  • Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol 35:S25–S54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaelzer MM, dos Santos MS, Coelho BP, de Quadros AH, Simão F, Usach V, Guma FCR, Setton-Avruj P, Lenz G, Salbego CG (2017) Hypoxic and reoxygenated microenvironment: stemness and differentiation state in glioblastoma. Mol Neurobiol 54(8):6261–6272

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Teng C, Huang W, Peng J, Wang C (2015) SOX2 Promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α Signaling. Int J Mol Sci 16(9):21643–21657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoshal S, Fuchs BC, Tanabe KK (2016) STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC. Hepatobiliary Surg Nutr 5(3):201

    Article  PubMed  PubMed Central  Google Scholar 

  • Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoni E, Bianchini F, Calorini L, Chiarugi P (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal 14(12):2361–2371

    Article  CAS  PubMed  Google Scholar 

  • Gonias SL, Hu J (2015) Urokinase receptor and resistance to targeted anticancer agents. Front Pharmacol 6:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govaert KM, Emmink BL, Nijkamp MW, Cheung ZJ, Steller EJ, Fatrai S, de Bruijn MT, Kranenburg O, Rinkes IHB (2014) Hypoxia after liver surgery imposes an aggressive cancer stem cell phenotype on residual tumor cells. Ann Surg 259(4):750–759

    Article  PubMed  Google Scholar 

  • Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386

    Article  CAS  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Aoyagi K, Isobe T, Kouhuji K, Shirouzu K (2014) Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer. Gastric Cancer 17(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, Sethumadhavan S, Philbrook P, Ko K, Cannici R (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(277):277ra230

    Article  CAS  Google Scholar 

  • Haynes J, McKee TD, Haller A, Wang Y, Leung C, Gendoo DM, Lima-Fernandes E, Kreso A, Wolman R, Szentgyorgyi E (2018) Administration of hypoxia-activated prodrug evofosfamide after conventional adjuvant therapy enhances therapeutic outcome and targets cancer-initiating cells in preclinical models of colorectal cancer. Clin Cancer Res 24(9):2116–2127

    Article  CAS  PubMed  Google Scholar 

  • Heddleston J, Li Z, Lathia J, Bao S, Hjelmeland A, Rich J (2010) Hypoxia inducible factors in cancer stem cells. Br J Cancer 102(5):789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holodny AI, Schulder M, Liu W-C, Wolko J, Maldjian JA, Kalnin AJ (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou P-C, Li Y-H, Lin S-C, Lin S-C, Lee J-C, Lin B-W, Liou J-P, Chang J-Y, Kuo C-C, Liu Y-M (2017) Hypoxia-induced downregulation of DUSP-2 phosphatase drives colon cancer stemness. Cancer Res 77(16):4305–4316

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1(7):638–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwadate Y, Matsutani T, Hirono S, Shinozaki N, Saeki N (2016) Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma. J Neurooncol 129(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Iyer AK, Singh A, Ganta S, Amiji MM (2013) Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev 65(13–14):1784–1802

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson H, Harrison H, Hughes É, Persson E, Rhost S, Fitzpatrick P, Gustafsson A, Andersson D, Gregersson P, Magnusson Y (2019) Hypoxia-induced secretion stimulates breast cancer stem cell regulatory signalling pathways. Mol Oncol 13(8):1693–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Kim S, Hong B-J, Lee C-J, Kim Y-E, Bok S, Oh J-M, Gwak S-H, Yoo MY, Lee MS (2019) Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res 79(4):795–806

    CAS  PubMed  Google Scholar 

  • Jing Y, Han Z, Zhang S, Liu Y, Wei L (2011) Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 1(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing L, Ruan Z, Sun H, Li Q, Han L, Huang L, Yu S, Wang Y, Guo H, Jiao M (2019) Epithelial–mesenchymal transition induced cancer-stem-cell-like characteristics in hepatocellular carcinoma. J Cell Physiol 234(10):18448–18458

    Article  CAS  PubMed  Google Scholar 

  • Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, Merkel AR, Johnson JR, Sterling JA, Wu JY (2016) Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 18(10):1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlert U, Mooney S, Natsumeda M, Steiger HJ, Maciaczyk J (2017) Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Int J Cancer 140(1):10–22

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Sato C, Shiozawa N, Sato A, Sato H, Virgona N, Yano T (2018) Suppressive effect of delta-tocotrienol on hypoxia adaptation of prostate cancer stem-like cells. Anticancer Res 38(3):1391–1399

    CAS  PubMed  Google Scholar 

  • Kang S-H, Cho HT, Devi S, Zhang Z, Escuin D, Liang Z, Mao H, Brat DJ, Olson JJ, Simons JW (2006) Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res 66(24):11991–11997

    Article  CAS  PubMed  Google Scholar 

  • Kao S-H, Cheng W-C, Wang Y-T, Wu H-T, Yeh H-Y, Chen Y-J, Tsai M-H, Wu K-J (2019) Regulation of miRNA biogenesis and histone modification by K63-polyubiquitinated DDX17 controls cancer stem-like features. Cancer Res 2376:2018

    Google Scholar 

  • Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lin Q, Glazer PM, Yun Z (2018) The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 20(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K-M, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26(4):633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim CK, Gu K-w, Park W (2019) Value of blood oxygenation level-dependent MRI for predicting clinical outcomes in uterine cervical cancer treated with concurrent chemoradiotherapy. Eur Radiol 29(11):6256–6265

    Article  PubMed  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu F, Li S, Zhong A, Meng X, Lai M (2016) The tumor microenvironment: an irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis. Cell Adhes Migr 10(4):1–13

    Article  CAS  Google Scholar 

  • Li B, Li C, Zhu M, Zhang Y, Du J, Xu Y, Liu B, Gao F, Liu H, Cai J (2017) Hypoxia-induced mesenchymal stromal cells exhibit an enhanced therapeutic effect on radiation-induced lung injury in mice due to an increased proliferation potential and enhanced antioxidant ability. Cell Physiol Biochem 44(4):1295–1310

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yan W, Suo X, Peng H, Yang X, Li Z, Zhang J, Liu D (2019) Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials 200:1–14

    Article  CAS  PubMed  Google Scholar 

  • Liang X (2011) EMT: new signals from the invasive front. Oral Oncol 47(8):686–687

    Article  PubMed  Google Scholar 

  • Liang J, Cheng Q, Huang J, Ma M, Zhang D, Lei X, Xiao Z, Zhang D, Shi C, Luo L (2019) Monitoring tumour microenvironment changes during anti-angiogenesis therapy using functional MRI. Angiogenesis 22(3):457–470

    Article  CAS  PubMed  Google Scholar 

  • Lin C-M, Yu C-F, Huang H-Y, Chen F-H, Hong J-H, Chiang C-S (2019) Distinct tumor microenvironment at tumor edge as a result of astrocyte activation is associated with therapeutic resistance for brain tumor. Front Oncol 9:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Salnikov AV, Bauer N, Aleksandrowicz E, Labsch S, Nwaeburu C, Mattern J, Gladkich J, Schemmer P, Werner J (2014) Triptolide reverses hypoxia-induced epithelial–mesenchymal transition and stem-like features in pancreatic cancer by NF-κB downregulation. Int J Cancer 134(10):2489–2503

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen C, Qian P, Lu X, Sun B, Zhang X, Wang L, Gao X, Li H, Chen Z (2015) Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat Commun 6:5988

    Article  CAS  PubMed  Google Scholar 

  • Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, Gatenby RA (2016) Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res 76(11):3136–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louie E, Nik S, Chen J-s, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12(6):R94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Samanta D, Xiang L, Zhang H, Hu H, Chen I, Bullen JW, Semenza GL (2015) Chemotherapy triggers HIF-1–dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc Natl Acad Sci 112(33):E4600–E4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciaczyk D, Picard D, Zhao L, Koch K, Herrera-Rios D, Li G, Marquardt V, Pauck D, Hoerbelt T, Zhang W (2017) CBF1 is clinically prognostic and serves as a target to block cellular invasion and chemoresistance of EMT-like glioblastoma cells. Br J Cancer 117(1):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H, Miele L, Liu Z, Bebek G, Bao S (2018) Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 22(1):104–118

    Article  CAS  PubMed  Google Scholar 

  • Marhold M, Tomasich E, El-Gazzar A, Heller G, Spittler A, Horvat R, Krainer M, Horak P (2015) HIF1α regulates mTOR signaling and viability of prostate cancer stem cells. Mol Cancer Res 13(3):556–564

    Article  CAS  PubMed  Google Scholar 

  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65(13–14):1866–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald PC, Chafe SC, Dedhar S (2016) Overcoming hypoxia-mediated tumor progression: combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntyre A, Hulikova A, Ledaki I, Snell C, Singleton D, Steers G, Seden P, Jones D, Bridges E, Wigfield S (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 76(13):3744–3755

    Article  CAS  PubMed  Google Scholar 

  • Melzer C, von der Ohe J, Lehnert H, Ungefroren H, Hass R (2017) Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Mol Cancer 16(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minata M, Audia A, Shi J, Lu S, Bernstock J, Pavlyukov MS, Das A, Kim S-H, Shin YJ, Lee Y (2019) Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep 26(7):1893–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Bhattacharya K, Mandal C (2018) Nutritional stress reprograms dedifferentiation in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: a stochastic model of cancer stem cells. Cell Death Discov 4(1):110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muramatsu S, Tanaka S, Mogushi K, Adikrisna R, Aihara A, Ban D, Ochiai T, Irie T, Kudo A, Nakamura N (2013) Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course. Hepatology 58(1):218–228

    Article  CAS  PubMed  Google Scholar 

  • Najafi M, Mortezaee K, Majidpoor J (2019a) Cancer stem cell (CSC) resistance drivers. Life Sciences 234:116781

    Article  CAS  PubMed  Google Scholar 

  • Najafi M, Farhood B, Mortezaee K (2019b) Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 234(6):8381–8395

    Article  CAS  PubMed  Google Scholar 

  • Nantajit D, Lin D, Li JJ (2015) The network of epithelial–mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 141(10):1697–1713

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee T-M, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öhlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the cancer wound. J Exp Med 211(8):1503–1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29(2):351–378

    Article  CAS  PubMed  Google Scholar 

  • Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, Werbeck JL, Amankulor NM, Huse JT, Holland EC (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14(3):357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires IM, Bencokova Z, Milani M, Folkes LK, Li J-L, Stratford MR, Harris AL, Hammond EM (2010) Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res 70(3):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistollato F, Giampieri F, Battino M (2015) The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol 75:58–70

    Article  CAS  PubMed  Google Scholar 

  • Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265

    Article  CAS  PubMed  Google Scholar 

  • Qiang L, Wu T, Zhang H, Lu N, Hu R, Wang Y, Zhao L, Chen F, Wang X, You Q (2012) HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 19(2):284

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Liu Y, Lu Y, Liu M, Li M, Li J, Wu L (2017) Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep 7(1):10592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352(6282):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapisarda A, Melillo G (2012) Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol 9(7):378

    Article  CAS  PubMed  Google Scholar 

  • Sabelström H, Quigley DA, Fenster T, Foster DJ, Fuchshuber CA, Saxena S, Yuan E, Li N, Paterno F, Phillips JJ (2019) High density is a property of slow-cycling and treatment-resistant human glioblastoma cells. Exp Cell Res 378(1):76–86

    Article  PubMed  CAS  Google Scholar 

  • Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL (2014) Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci 111(50):E5429–E5438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2(12):758–770

    Article  PubMed  Google Scholar 

  • Schonberg DL, Lubelski D, Miller TE, Rich JN (2014) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Asp Med 39:82–101

    Article  CAS  Google Scholar 

  • Schwab LP, Peacock DL, Majumdar D, Ingels JF, Jensen LC, Smith KD, Cushing RC, Seagroves TN (2012) Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res 14(1):R6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2016a) The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochimica et Biophysica Acta (BBA)-Mol Cell Res 1863(3):382–391

    Article  CAS  Google Scholar 

  • Semenza GL (2016b) Dynamic regulation of stem cell specification and maintenance by hypoxia-inducible factors. Mol Asp Med 47:15–23

    Article  CAS  Google Scholar 

  • Shiraishi A, Tachi K, Essid N, Tsuboi I, Nagano M, Kato T, Yamashita T, Bando H, Hara H, Ohneda O (2017) Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci 108(3):362–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadlbauer A, Zimmermann M, Bennani-Baiti B, Helbich TH, Baltzer P, Clauser P, Kapetas P, Bago-Horvath Z, Pinker K (2019) Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: initial Results. Mol Imag Biol 21(4):758–770

    Article  CAS  Google Scholar 

  • Storci G, Bertoni S, De Carolis S, Papi A, Nati M, Ceccarelli C, Pirazzini C, Garagnani P, Ferrarini A, Buson G (2013) Slug/β-catenin–dependent proinflammatory phenotype in hypoxic breast cancer stem cells. Am J Pathol 183(5):1688–1697

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Cai J, Li H, He C, Zhou C, Dong Y, Chen L, Zhang B, Wang Y, Zhang Y (2018) p53-dependent CD51 expression contributes to characteristics of cancer stem cells in prostate cancer. Cell Death Dis 9(5):523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sundar SJ, Hsieh JK, Manjila S, Lathia JD, Sloan A (2014) The role of cancer stem cells in glioblastoma. Neurosurg Focus 37(6):E6

    Article  PubMed  Google Scholar 

  • Tang Y-A, Chen Y-f, Bao Y, Mahara S, Yatim SMJ, Oguz G, Lee PL, Feng M, Cai Y, Tan EY (2018) Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci 115(26):E5990–E5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP (2017) Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Crit Rev Oncol/Hematol 113:22–27

    Article  Google Scholar 

  • Van Den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M, Voncken JW, Harris AL, Buffa FM, Haider S (2014) Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun 5:5203

    Article  PubMed  CAS  Google Scholar 

  • Varna M, Gapihan G, Feugeas J-P, Ratajczak P, Tan S, Ferreira I, Leboeuf C, Setterblad N, Duval A, Verine J (2015) Stem cells increase in numbers in perinecrotic areas in human renal cancer. Clin Cancer Res 21(4):916–924

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen L, Felipe De Sousa EM, Van Der Heijden M, Cameron K, De Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wan W, Xiong S, Wang J, Zou D, Lan C, Yu S, Liao B, Feng H, Wu N (2017a) HIF1α regulates glioma chemosensitivity through the transformation between differentiation and dedifferentiation in various oxygen levels. Sci Rep 7(1):7965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Wan W-w, Xiong S-L, Feng H, Wu N (2017b) Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death Discov 3:16105

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J, Wu A, Kong L-Y, Wang Y, Fuller G, Fokt I, Melillo G, Priebe W, Heimberger AB (2011) Hypoxia potentiates glioma-mediated immunosuppression. PloS One 6(1):e16195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won C, Kim BH, Yi EH, Choi KJ, Kim EK, Jeong JM, Lee JH, Jang JJ, Yoon JH, Jeong WI (2015) Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 62(4):1160–1173

    Article  CAS  PubMed  Google Scholar 

  • Wu S-L, Li Y-J, Liao K, Shi L, Zhang N, Liu S, Hu Y-Y, Li S-L, Wang Y (2017) 2-Methoxyestradiol inhibits the proliferation and migration and reduces the radioresistance of nasopharyngeal carcinoma CNE-2 stem cells via NF-κB/HIF-1 signaling pathway inactivation and EMT reversal. Oncol Rep 37(2):793–802

    Article  CAS  PubMed  Google Scholar 

  • Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W, Pandey PR, Fukuda K, Hirota S, Sugai T (2011) Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 30(39):4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Liu F, Han L, Zhao L, Chen J, Olopade OI, He M, Wei M (2018a) HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res 37(1):256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Jiang Z, Cheng L, Chen K, Zhou C, Sun L, Qian W, Li J, Cao J, Xu Q (2018b) Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1α. Exp Cell Res 371(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Wang L, Guo H, Wang X (2012) Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 318(19):2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34(1):111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, de Milito A, Olofsson M, Gullbo J, D’Arcy P, Linder S (2015) Targeting mitochondrial function to treat quiescent tumor cells in solid tumors. Int J Mol Sci 16(11):27313–27326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Duan S, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y (2016) Cisplatin treatment increases stemness through upregulation of hypoxia-inducible factors by interleukin-6 in non-small cell lung cancer. Cancer Sci 107(6):746–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Lou Y, Zhang J, Fu Q, Wei T, Sun X, Chen Q, Yang J, Bai X, Liang T (2017) Hypoxia-inducible factor-2α promotes tumor progression and has crosstalk with Wnt/β-catenin signaling in pancreatic cancer. Mol Cancer 16(1):119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Han H, Rong Y, Zhu K, Zhu Z, Tang Z, Xiong C, Tao J (2018) Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling. J Exp Clin Cancer Res 37(1):291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu H, Wang D, Liu Y, Su Z, Zhang L, Chen F, Zhou Y, Wu Y, Yu M, Zhang Z (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133 + pancreatic cancer stem-like cells. Cancer Cell Int 13(1):119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Farhood, B., Mortezaee, K. et al. Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J Cancer Res Clin Oncol 146, 19–31 (2020). https://doi.org/10.1007/s00432-019-03080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-019-03080-1

Keywords

Navigation