Skip to main content

Advertisement

Log in

Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide and new improvements are urgently needed. Several miRNA-targeted therapeutics have reached clinical development. MicroRNA-143 (miR-143) was found to significantly suppress the migration and invasion of NSCLC. It might be of great potential for NSCLC treatment. However, the therapeutic effect of miR-143 against NSCLC in vivo has not been explored until now.

Methods

The cationic liposome/pVAX-miR-143 complex (CL-pVAX-miR-143) was prepared and its biodistribution was assessed. The tumor suppression effects of CL-pVAX-miR-143 were evaluated in early-stage and advanced experimental lung cancer metastasis mice models by systemic delivery, respectively, and also in subcutaneous tumor models by intratumoral injection. The toxicity of CL-pVAX-miR-143 was assessed by H&E analysis and biochemical measurements. The preliminary mechanism of CL-pVAX-miR-143 on tumor suppression was explored by immunochemistry and western blotting.

Results

The assays on the stability and safety of CL-pVAX-miR-143 showed that it mainly accumulated in the lung after systemic administration. The intratumoral delivery of CL-pVAX-miR-143 effectively inhibited A549 subcutaneous tumor growth. Notably, systemic delivery of CL-pVAX-miR-143 significantly inhibited tumor metastasis and prolonged survival dose dependently in early-stage experimental lung cancer metastasis models. More importantly, same results were shown in advanced mice models with metastasis. CL-pVAX-miR-143 treatment did not induce obvious acute toxicity. The preliminary mechanism on inhibiting tumor metastasis might be induced by targeting CD44v3.

Conclusions

Our results suggested that CL-pVAX-miR-143 might be a promising strategy for clinical treatment of non-small cell lung cancer, especially for advanced NSCLC with metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akao Y, Nakagawa Y, Hirata I et al (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 17:398–408

    Article  CAS  PubMed  Google Scholar 

  • Barbour AP, Reeder JA, Walsh MD, Fawcett J, Antalis TM, Gotley DC (2003) Expression of the CD44v2-10 isoform confers a metastatic phenotype: importance of the heparan sulfate attachment site CD44v3. Cancer Res 63:887–892

    CAS  PubMed  Google Scholar 

  • Cioce M, Strano S, Muti P, Blandino G (2016) Mir 145/143: tumor suppressor, oncogenic microenvironmental factor or both? Aging-US 8:1153–1155

    Article  CAS  Google Scholar 

  • Cupp J, Culakova E, Poniewierski MS, Dale DC, Lyman GH, Crawford J (2018) Analysis of factors associated with in-hospital mortality in lung cancer chemotherapy patients with neutropenia. Clin Lung Cancer 19:e163–e169

    Article  PubMed  Google Scholar 

  • Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D (2014) Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13:2352–2360

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova N, Gocheva V, Bhutkar A et al (2016) Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov 6:188–201

    Article  CAS  PubMed  Google Scholar 

  • Dong YZ, Hu T (2018) Effects of miR-143 overexpression on proliferation, apoptosis, EGFR and downstream signaling pathways in PC9/GR cell line. Eur Rev Med Pharmacol Sci 22:1709–1716

    PubMed  Google Scholar 

  • Fernandez-Pineiro I, Badiola I, Sanchez A (2017) Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv 35:350–360

    Article  CAS  PubMed  Google Scholar 

  • Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC, Jaggi M (2017) miRNA nanotherapeutics for cancer. Drug Discov Today 22:424–432

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nakamura A, Arai S, Kawano K, Maitani Y, Yonemochi E (2015) siRNA delivery to lung-metastasized tumor by systemic injection with cationic liposomes. J Liposome Res 25:279–286

    Article  CAS  PubMed  Google Scholar 

  • He Z, Yi J, Liu X et al (2016) MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial-mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma. Mol Cancer 15:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirsch FR, Suda K, Wiens J, Bunn PA Jr (2016) New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 388:1012–1024

    Article  PubMed  Google Scholar 

  • Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, Paz-Ares L (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389:299–311

    Article  CAS  PubMed  Google Scholar 

  • Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B (2018) Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol 233:5574–5588

    Article  CAS  PubMed  Google Scholar 

  • Hossian A, Sajib MS, Tullar PE, Mikelis CM, Mattheolabakis G (2018) Multipronged activity of combinatorial miR-143 and miR-506 inhibits Lung Cancer cell cycle progression and angiogenesis in vitro. Sci Rep 8:10495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iscaife A, Reis ST, Morais DR et al (2018) Treating metastatic prostate cancer with microRNA-145. Apoptosis 23:388–395

    Article  CAS  PubMed  Google Scholar 

  • Ito I, Ji L, Tanaka F et al (2004) Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 11:733–739

    Article  CAS  PubMed  Google Scholar 

  • Jafri SH, Shi R, Mills G (2013) Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. BMC Cancer 13:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin YP, Hu YP, Wu XS et al (2018) miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3 K/AKT pathway in gallbladder carcinoma. Cell Death Dis 9:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karmakar S, Kaushik G, Nimmakayala R, Rachagani S, Ponnusamy MP, Batra SK (2017) MicroRNA regulation of K-Ras in pancreatic cancer and opportunities for therapeutic intervention. Semin Cancer Biol 54:63–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei C, Du F, Sun L et al (2017) miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6. Cell Death Dis 8:e3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Torossian A, Li W et al (2011) A novel bioluminescence orthotopic mouse model for advanced lung cancer. Radiat Res 176:486–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Wang W, Li Z et al (2017) MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett 410:212–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liang Y, Sang Y et al (2018) MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 9:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Zhan Y, Feng J, Luo J, Fan S (2018) MicroRNAs associated with therapy of non-small cell lung cancer. Int J Biol Sci 14:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Jiang Q, Pu Q et al (2013) MicroRNA-143 inhibits migration and invasion of human non-small-cell lung cancer and its relative mechanism. Int J Biol Sci 9:680–692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao Y, Zhang LF, Guo R et al (2016) (18)F-FDG PET/CT for monitoring the response of breast cancer to miR-143-based therapeutics by targeting tumor glycolysis. Mol Ther Nucleic Acids 5:e357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidharan R, Babu A, Amreddy N et al (2016) Folate receptor-targeted nanoparticle delivery of HuR-RNAi suppresses lung cancer cell proliferation and migration. J Nanobiotechnol 14:47

    Article  CAS  Google Scholar 

  • Noguchi S, Mori T, Hoshino Y et al (2011) MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett 307:211–220

    Article  CAS  PubMed  Google Scholar 

  • Olaussen KA, Postel-Vinay S (2016) Predictors of chemotherapy efficacy in non-small-cell lung cancer: a challenging landscape. Ann Oncol 27:2004–2016

    Article  CAS  PubMed  Google Scholar 

  • Ou W, Ye S, Yang W et al (2012) Enhanced antitumor effect of cisplatin in human NSCLC cells by tumor suppressor LKB1. Cancer Gene Ther 19:489–498

    Article  CAS  PubMed  Google Scholar 

  • Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, Maitra A (2011) Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 10:1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh R, Saeki T, Templeton NS et al (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 3:337–350

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez BL, Li X, Kiguchi K, DiGiovanni J, Unger EC, Cui Z (2012) Control of solid tumor growth in mice using EGF receptor-targeted RNA replicase-based plasmid DNA. Nanomedicine (Lond) 7:475–491

    Article  CAS  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  • Sakurai F, Nishioka T, Yamashita F, Takakura Y, Hashida M (2001) Effects of erythrocytes and serum proteins on lung accumulation of lipoplexes containing cholesterol or DOPE as a helper lipid in the single-pass rat lung perfusion system. Eur J Pharm Biopharm 52:165–172

    Article  CAS  PubMed  Google Scholar 

  • Schroeder A, Heller DA, Winslow MM et al (2012) Treating metastatic cancer with nanotechnology. Nat Rev Cancer 12:39–50

    Article  CAS  Google Scholar 

  • Shi HS, Yang LP, Wei W et al (2013) Systemically administered liposome-encapsulated Ad-PEDF potentiates the anti-cancer effects in mouse lung metastasis melanoma. J Transl Med 11:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    Article  PubMed  Google Scholar 

  • Simmons CP, Koinis F, Fallon MT et al (2015) Prognosis in advanced lung cancer—a prospective study examining key clinicopathological factors. Lung Cancer 88:304–309

    Article  PubMed  Google Scholar 

  • Skjefstad K, Johannessen C, Grindstad T et al (2018) A gender specific improved survival related to stromal miR-143 and miR-145 expression in non-small cell lung cancer. Sci Rep 8:8549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904

    Article  CAS  PubMed  Google Scholar 

  • Thapa B, Plianwong S, Remant Bahadur KC, Rutherford B, Uludag H (2016) Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: optimal substitution is critical for effective delivery. Acta Biomater 33:213–224

    Article  CAS  PubMed  Google Scholar 

  • van Zandwijk N, Pavlakis N, Kao SC et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–1396

    Article  PubMed  Google Scholar 

  • Verbeke R, Lentacker I, Wayteck L et al (2017) Co-delivery of nucleoside-modified mRNA and TLR agonists for cancer immunotherapy: restoring the immunogenicity of immunosilent mRNA. J Control Release 266:287–300

    Article  CAS  PubMed  Google Scholar 

  • Võsa VU, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132:2884–2893

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Costanza F, Li C, Nimmagadda A, Song D, Cai J (2016) PEG-poly(amino acid)s/microRNA complex nanoparticles effectively arrest the growth and metastasis of colorectal cancer. J Biomed Nanotechnol 12:1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Chen M, Wu W (2017) Analysis of microRNA (miRNA) expression profiles reveals 11 key biomarkers associated with non-small cell lung cancer. World J Surg Oncol 15:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Guo W, Li K et al (2018) Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis. Exp Cell Res 371:50–62

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555

    Article  CAS  PubMed  Google Scholar 

  • Zaiden M, Feinshtein V, David A (2017) Inhibition of CD44v3 and CD44v6 function blocks tumor invasion and metastatic colonization. J Control Release 257:10–20

    Article  CAS  PubMed  Google Scholar 

  • Zang H, Peng J, Wang W, Fan S (2017) Roles of microRNAs in the resistance to platinum based chemotherapy in the non-small cell lung cancer. J Cancer 8:3856–3861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zer A, Leighl N (2014) Promising targets and current clinical trials in metastatic non-squamous NSCLC. Front Oncol 4:329

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai W, Sun Y, Guo C et al (2017) LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. Cell Death Differ 24:1502–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng F, Liao YJ, Cai MY et al (2015) Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet 11:e1004873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zugazagoitia J, Molina-Pinelo S, Lopez-Rios F, Paz-Ares L (2017) Biological therapies in nonsmall cell lung cancer. Eur Respir J 49:1601520

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants performed by any of the authors. All experiments involving animals were admitted and performed according to the requirements of the Institutional Animal Care and Use Committee of West China Hospital, Sichuan University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Yuan, Y., Gong, Y. et al. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J Cancer Res Clin Oncol 145, 2951–2967 (2019). https://doi.org/10.1007/s00432-019-03051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-019-03051-6

Keywords

Navigation