The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression

Abstract

Purpose

Phytochemicals are naturally occurring plant-derived compounds and some of them have the potential to serve as anticancer drugs. Based on recent evidence, aberrantly regulated expression of microRNAs (miRNAs) is closely associated with malignancy. MicroRNAs are characterized as small non-coding RNAs functioning as posttranscriptional regulators of gene expression. Accordingly, miRNAs regulate various target genes, some of which are involved in the process of carcinogenesis.

Results

This comprehensive review emphasizes the anticancer potential of phytochemicals, either isolated or in combination, mediated by miRNAs. The ability to modulate the expression of miRNAs demonstrates their importance as regulators of tumorigenesis. Phytochemicals as anticancer agents targeting miRNAs are widely studied in preclinical in vitro and in vivo research. Unfortunately, their anticancer efficacy in targeting miRNAs is less investigated in clinical research.

Conclusions

Significant anticancer properties of phytochemicals as regulators of miRNA expression have been proven, but more studies investigating their clinical relevance are needed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abba ML, Patil N, Leupold JH, Moniuszko M, Utikal J, Niklinski J, Allgayer H (2017) MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett 387:84–94

    Article  CAS  PubMed  Google Scholar 

  2. Abbasi BA, Iqbal J, Mahmood T, Khalil AT, Ali B, Kanwal S, Sayed Shah A, Ahmad R (2018) Role of dietary phytochemicals in modulation of miRNA expression: natural swords combating breast cancer. Asian Pac J Trop Med 11:501–509

    Article  Google Scholar 

  3. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D (2018) Flavonoids in cancer and apoptosis. Cancers (Basel) 11:28

    Article  Google Scholar 

  4. Avci CB, Susluer SY, Caglar HO, Balci T, Aygunes D, Dodurga Y, Gunduz C (2014) Genistein-induced mir-23b expression inhibits the growth of breast cancer cells. Contemp Oncol (Pozn) 19:32–35

    Google Scholar 

  5. Bahena-Ocampo I, Espinosa M, Ceballos-Cancino G, Lizarraga F, Campos-Arroyo D, Schwarz A, Maldonado V, Melendez-Zajgla J, Garcia-Lopez P (2016) miR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation. EMBO Rep 17:648–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bai JW, Wang X, Zhang YF, Yao GD, Liu H (2017) MicroRNA-320 inhibits cell proliferation and invasion in breast cancer cells by targeting SOX4. Oncol Lett 14:7145–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bandara KV, Michael MZ, Gleadle JM (2017) MicroRNA biogenesis in hypoxia. Microrna 6:80–96

    Article  CAS  PubMed  Google Scholar 

  8. Bespalov VG, Alexandrov VA, Vysochina GI, Kostikova VA, Baranenko DA (2017) The inhibiting activity of meadowsweet extract on neurocarcinogenesis induced transplacentally in rats by ethylnitrosourea. J Neurooncol 131:459–467

    Article  PubMed  Google Scholar 

  9. Bespalov VG, Alexandrov VA, Semenov AL, Vysochina GI, Kostikova VA, Baranenko DA (2018) The inhibitory effect of Filipendula ulmaria (L.) Maxim. on colorectal carcinogenesis induced in rats by methylnitrosourea. J Ethnopharmacol 227:1–7

    Article  PubMed  Google Scholar 

  10. Blahna MT, Hata A (2012) Smad-mediated regulation of microRNA biosynthesis. FEBS Lett 586:1906–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:1712

    Article  CAS  PubMed Central  Google Scholar 

  12. Chan SH, Wang LH (2015) Regulation of cancer metastasis by microRNAs. J Biomed Sci 22:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Gao DY, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141

    Article  CAS  PubMed  Google Scholar 

  14. Cheng CW, Wang HW, Chang CW, Chu HW, Chen CY, Yu JC, Chao JI, Liu HF, Ding SL, Shen CY (2012) MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat 134:1081–1093

    Article  CAS  PubMed  Google Scholar 

  15. Chiou YS, Li S, Ho CT, Pan MH (2018) Prevention of breast cancer by natural phytochemicals: focusing on molecular targets and combinational strategy. Mol Nutr Food Res 62:e1800392

    Article  CAS  PubMed  Google Scholar 

  16. Chiu HS, Martínez MR, Komissarova EV, Llobet-Navas D, Bansal M, Paull EO, Califano A (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res 46:4354–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi SK, Kim HS, Jin T, Hwang EH, Jung M, Moon WK (2016) Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3 K/AKT signaling pathways by secreting VEGF-A. BMC Cancer 16:570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coker-Gurkan A, Bulut D, Genc R, Arisan ED, Obakan-Yerlikaya P, Palavan-Unsal N (2018) Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Mol Biol Rep 46:355–369

    Article  CAS  PubMed  Google Scholar 

  19. Cong N, Du P, Zhang A, Shen F, Su J, Pu P, Wang T, Zjang J, Kang C, Zhang Q (2013) Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep 29:1579–1587

    Article  CAS  PubMed  Google Scholar 

  20. Dacosta C, Bao Y (2017) The role of MicroRNAs in the chemopreventive activity of sulforaphane from cruciferous vegetables. Nutrients 9:902

    Article  CAS  PubMed Central  Google Scholar 

  21. Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih I, Zhang Y, Wood W, Becker KG, Morin PJ (2008) MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 3:e2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dang K, Myers KA (2015) The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 16:6353–6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de la Parra C, Castillo-Pichardo L, Cruz-Collazo A, Cubano L, Redis R, Calin GA, Dharmawardhane S (2016) Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. Nutr Cancer 68:154–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Derosa G, Maffioli P, Sahebkar A (2016) Ellagic acid and its role in chronic diseases. Adv Exp Med Biol 928:473–479

    Article  CAS  PubMed  Google Scholar 

  25. Diaz-Gerevini GT, Repossi G, Dain A, Tarres MC, Das UN, Eynard AR (2016) Beneficial action of resveratrol: how and why? Nutrition 32:174–178

    Article  CAS  PubMed  Google Scholar 

  26. Dong J, Liu Y, Liao W, Liu R, Shi P, Wang L (2016) miRNA-223 is a potential diagnostic and prognostic marker for osteosarcoma. J Bone Oncol 5:74–79

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dou H, Shen R, Tao J, Huang L, Shi H, Chen H, Wang Y, Wang T (2017) Curcumin suppresses the colon cancer proliferation by inhibiting Wnt/β-catenin pathways via miR-130a. Front Pharmacol 8:877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du C, Weng X, Hu W, Lv Z, Xiao H, Ding C, Gyabaah OA, Xie H, Zhou L, Wu J et al (2015) Hypoxia-inducible MiR-182 promotes angiogenesis by targeting RASA1 in hepatocellular carcinoma. J Exp Clin Cancer Res 34:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duan J, Zhang H, Qu Y, Deng T, Huang D, Liu R, Zhang L, Bai M, Zhou L, Ying G, Ba Y (2016) Onco-miR-130 promotes cell proliferation and migration by targeting TGFβR2 in gastric cancer. Oncotarget 7:44522–44533

    PubMed  PubMed Central  Google Scholar 

  30. Fan Y, Ma X, Li H, Gao Y, Huang Q, Zhang Y, Bao X, Du Q, Luo G, Liu K et al (2018) miR-122 promotes metastasis of clear-cell renal cell carcinoma by downregulating Dicer. Int J Cancer 142:547–560

    Article  CAS  PubMed  Google Scholar 

  31. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I et al (2015) Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol 35(Suppl):S25–S54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng YH, Tsao CJ (2016) Emerging role of microRNA-21 in cancer. Biomed Rep 5:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gandhi NS, Tekade RK, Chougule MB (2014) Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 194:238–256

    Article  CAS  PubMed  Google Scholar 

  34. Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46

    Article  PubMed  Google Scholar 

  35. Golubnitschaja O, Debald M, Yeghiazaryan K, Kuhn W, Pešta M, Costigliola V, Grech G (2016) Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol 37:12941–12957

    Article  PubMed  Google Scholar 

  36. Gong J, Cui Z, Li L, Ma Q, Wang Q, Gao Y, Sun H (2015) MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour Biol 36:7831–7840

    Article  CAS  PubMed  Google Scholar 

  37. González-Sarrías A, Núñez-Sánchez MÁ, Tomé-Carneiro J, Tomás-Barberán FA, García-Conesa MT, Espín JC (2016) Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: microRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol Nutr Food Res 60:701–716

    Article  CAS  PubMed  Google Scholar 

  38. Gu JB, Bao XB, Ma Z (2018) Effects of miR-21 on proliferation and apoptosis in human gastric adenocarcinoma cells. Oncol Lett 15:618–622

    PubMed  Google Scholar 

  39. Guan H, Li W, Li Y, Wang J, Li Y, Tang Y, Lu S (2017) MicroRNA-93 promotes proliferation and metastasis of gastric cancer via targeting TIMP2. PLoS One 12:e0189490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gulyaeva LF, Kushlinskiy NE (2016) Regulatory mechanisms of microRNA expression. J Transl Med 14:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo R, Wang Y, Shi WY, Liu B, Hou SQ, Liu L (2012) MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway. Molecules 17:14733–14747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo LH, Li H, Wang F, Yu J, He JS (2013) The tumor suppressor roles of miR-433 and miR-127 in gastric cancer. Int J Mol Sci 14:14171–14184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo F, Cogdell D, Hu L, Yang D, Sood AK, Xue F, Zhang W (2014) MiR-101 suppresses the epithelial-to-mesenchymal transition by targeting ZEB1 and ZEB2 in ovarian carcinoma. Oncol Rep 31:2021–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo X, Cai Q, Bao P, Wu J, Wen W, Ye F, Zheng W, Zheng Y, Shu XO (2016) Long-term soy consumption and tumor tissue MicroRNA and gene expression in triple-negative breast cancer. Cancer 122:2544–2551

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gurtan AM, Sharp PA (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425:3582–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamam R, Ali AM, Alsaleh KA, Kassem M, Alfayez M, Aldahmash A, Alajez NM (2016) microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci Rep 6:25997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hargraves KG, He L, Firestone GL (2015) Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog 55:486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18:282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herbert KM, Sarkar SK, Mills M, Delgado De la Herran HC, Neuman KC, Steitz JA (2016) A heterotrimer model of the complete microprocessor complex revealed by single-molecule subunit counting. RNA 22:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y, Winter JM, Le Leu RK (2014) Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila) 7:786–795

    Article  CAS  Google Scholar 

  51. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70:3119–3127

    Article  CAS  PubMed  Google Scholar 

  52. Jiang F, Zhao W, Zhou L, Zhang L, Liu Z, Yu D (2014) miR-222 regulates the cell biological behavior of oral squamous cell carcinoma by targeting PUMA. Oncol Rep 31:1255–1262

    Article  CAS  PubMed  Google Scholar 

  53. Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, Pec M (2018) Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 23:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kartha RV, Subramanian S (2014) Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet 5:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Katchy A, Williams C (2014) Profiling of estrogen-regulated microRNAs in breast cancer cells. J Vis Exp JoVE 84:e51285

    Google Scholar 

  56. Ke HL, Li WM, Lin HH, Hsu WC, Hsu YL, Chang LL, Huang CN, Li CC, Chang HP, Yeh HC et al (2017) Hypoxia-regulated MicroRNA-210 overexpression is associated with tumor development and progression in upper tract urothelial carcinoma. Int J Med Sci 14:578–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim YJ, Chung SO, Kim JK, Park SU (2017) Recent studies on resveratrol and its biological and pharmacological activity. EXCLI J 16:602–608

    PubMed  PubMed Central  Google Scholar 

  58. Kim J, Yao F, Xiao Z, Sun Y, Ma L (2018) MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev 37:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klinge CM (2015) miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol 418:273–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L, Li Y, Ali S, Sethi S, Hassan O et al (2012) Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 4:14–23

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY et al (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33:679–689

    Article  CAS  PubMed  Google Scholar 

  62. Koo KH, Kwon H (2018) MicroRNA miR-4779 suppresses tumor growth by inducing apoptosis and cell cycle arrest through direct targeting of PAK2 and CCND3. Cell Death Dis 9:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kubatka P, Uramova S, Kello M, Kajo Karol, Kruzliak P, Mojzis J, Vybohova D, Adamkov M, Jasek K, Lasabova Z et al (2017) Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma. J Cell Mol Med 21:2837–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer 130:2044–2053

    Article  CAS  PubMed  Google Scholar 

  66. Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, Horiguchi J (2017) Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 62:15–24

    Article  CAS  PubMed  Google Scholar 

  67. Ladomery MR, Maddocks DG, Wilson ID (2011) MicroRNAs: their discovery, biogenesis, function and potential use as biomarkers in non-invasive prenatal diagnostics. Int J Mol Epidemiol Genet 2:253–260

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lan H, Chen W, He G, Yang S (2015) miR-140-5p inhibits ovarian cancer growth partially by repression of PDGFRA. Biomed Pharmacother 75:117–122

    Article  CAS  PubMed  Google Scholar 

  69. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee CM, Lee J, Nam MJ, Park SH (2018) Indole-3-carbinol induces apoptosis in human osteosarcoma MG-63 and U2OS cells. Biomed Res Int 2018:7970618

    PubMed  PubMed Central  Google Scholar 

  71. Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M (2017) Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics 7:3461–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS, Wei MQ (2012) Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol 39:739–746

    Article  CAS  PubMed  Google Scholar 

  73. Li Q, Eades G, Yao Y, Zhang Y, Zhou Q (2014a) Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lesions. J Biol Chem 289:1303–1312

    Article  CAS  PubMed  Google Scholar 

  74. Li L, Huang K, You Y, Fu X, Hu L, Song L, Meng Y (2014b) Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol 44:2111–2120

    Article  CAS  PubMed  Google Scholar 

  75. Li L, Li B, Chen D, Liu L, Huang C, Lu Z, Lun L, Wan X (2015a) miR-139 and miR-200c regulate pancreatic cancer endothelial cell migration and angiogenesis. Oncol Rep 34:51–58

    Article  CAS  PubMed  Google Scholar 

  76. Li D, Xia H, Li ZY, Hua L, Li L (2015b) Identification of novel breast cancer subtype-specific biomarkers by integrating genomics analysis of DNA copy number aberrations and miRNA-mRNA dual expression profiling. Biomed Res Int 2015:746970

    PubMed  PubMed Central  Google Scholar 

  77. Li Y, Zhang D, Wang X, Yao X, Ye C, Zhang S, Wang H, Chang C, Xia H, Wang YC et al (2015c) Hypoxia-inducible miR-182 enhances HIF1α signaling via targeting PHD2 and FIH1 in prostate cancer. Sci Rep 5:12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Y, Chen S, Shan Z, Bi L, Yu S, Li Y, Xu S (2017a) miR-182-5p improves the viability, mitosis, migration, and invasion ability of human gastric cancer cells by down-regulating RAB27A. Biosci Rep 37:BSR20170136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li W, Yang W, Liu Y, Chen S, Chin S, Qi X, Zhao Y, Liu H, Wang J, Mei X, Huang P, Xu D (2017b) MicroRNA-378 enhances inhibitory effect of curcumin on glioblastoma. Oncotarget 8:73938–73946

    PubMed  PubMed Central  Google Scholar 

  80. Li M, Yang Y, Kuang Y, Gan X, Zeng W, Liu Y, Guan H (2017c) miR-365 induces hepatocellular carcinoma cell apoptosis through targeting Bcl-2. Exp Ther Med 13:2279–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Y, Domina A, Lim G, Chang T, Zhang T (2018a) Evaluation of curcumin, a natural product in turmeric, on Burkitt lymphoma and acute myeloid leukemia cancer stem cell markers. Future Oncol 14:2353–2360

    Article  CAS  PubMed  Google Scholar 

  82. Li X, Zhao Z, Li M, Liu M, Bahena A, Zhang Y, Zhang Y, Nambiar C, Liu G (2018b) Sulforaphane promotes apoptosis, and inhibits proliferation and self-renewal of nasopharyngeal cancer cells by targeting STAT signal through miRNA-124-3p. Biomed Pharmacother 103:473–481

    Article  CAS  PubMed  Google Scholar 

  83. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47:163–174

    Article  CAS  PubMed  Google Scholar 

  84. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, Huang C, Zhou F, Liu M, Wu X et al (2012) miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 5:753–760

    Article  CAS  PubMed  Google Scholar 

  86. Liu ZL, Wang H, Liu J, Wang ZX (2013) MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem 372:35–45

    Article  CAS  PubMed  Google Scholar 

  87. Liu Z, Tu K, Liu Q (2014) Effects of microRNA-30a on migration, invasion and prognosis of hepatocellular carcinoma. FEBS Lett 588:3089–3097

    Article  CAS  PubMed  Google Scholar 

  88. Liu J, Meng T, Yuan M, Wen L, Cheng B, Liu N, Huang X, Hong Y, Yuan H, Hu F (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomed 11:6713–6725

    Article  CAS  Google Scholar 

  89. Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, Perez-Plasencia C, Del Moral-Hernandez O, Castaneda-Ortiz EJ, Rodriguez-Cuevas S (2012) MetastamiRs: non-coding MicroRNAs driving cancer invasion and metastasis. Int J Mol Sci 13:1347–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z, Mao J (2017) MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 24:386–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genom 11:537–561

    Article  CAS  Google Scholar 

  92. Martin del Campo SE, Latchana N, Levine KM, Grignol VP, Fairchild ET, Jaime-Ramirez AC, Dao TV, Karpa VI, Carson M, Ganju A et al (2015) MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One 10:e0115919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McGuire A, Brown JA, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mehrgou A, Akouchekian M (2017) Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease. J Res Med Sci 22:130

    Article  PubMed  PubMed Central  Google Scholar 

  95. Morales S, Monzo M, Navarro A (2017) Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 8:203–212

    Article  CAS  PubMed  Google Scholar 

  96. Munagala R, Aqil F, Vadhanam MV, Gupta RC (2013) MicroRNA ‘signature’ during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett 339:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7:637–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402

    Article  Google Scholar 

  99. Oliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56

    Article  PubMed  PubMed Central  Google Scholar 

  100. Otsuka K, Yamamoto Y, Ochiya T (2018) Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget 9:24718–24730

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pan Z, Zhang M, Ma T, Xue ZY, Li GF, Hao LY, Cao JL (2016) Hydroxymethylation of microRNA-365-3p regulates nociceptive behaviors via Kcnh2. J Neurosci 36:2769–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pan JH, Abernathy B, Kim YJ, Lee JH, Kim JH, Shin EC, Kim JK (2017) Cruciferous vegetables and colorectal cancer prevention through microRNA regulation: a review. Crit Rev Food Sci Nutr 58:2026–2038

    Article  CAS  PubMed  Google Scholar 

  103. Pang L, Li B, Zheng B, Niu L, Ge L (2017) miR-138 inhibits gastric cancer growth by suppressing SOX4. Oncol Rep 38:1295–1302

    Article  CAS  PubMed  Google Scholar 

  104. Pasculli B, Barbano R, Parrella P (2018) Epigenetics of breast cancer: biology and clinical implication in the era of precision medicine. Semin Cancer Biol 51:22–35

    Article  PubMed  Google Scholar 

  105. Patafio FM, Brooks SC, Wei X, Peng Y, Biagi J, Booth CM (2016) Research output and the public health burden of cancer: is there any relationship? Curr Oncol 23:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9:3–12

    Article  CAS  PubMed  Google Scholar 

  107. Qadir MI, Faheem A (2017) miRNA: a diagnostic and therapeutic tool for pancreatic cancer. Crit Rev Eukaryot Gene Expr 27:197–204

    Article  PubMed  Google Scholar 

  108. Qin W, Zhang K, Clarke K, Weiland T, Sauter ER (2014) Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer 66:270–277

    Article  CAS  PubMed  Google Scholar 

  109. Qu J, Li M, An J, Zhao B, Zhong W, Gu Q, Cao L, Yang H, Hu C (2015) MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int J Oncol 47:2141–2152

    Article  CAS  PubMed  Google Scholar 

  110. Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, Mott JL (2012) miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 55:465–475

    Article  CAS  PubMed  Google Scholar 

  111. Remenyi J, Bajan S, Fuller-Pace FV, Arthur JSC, Hutvagner G (2016) The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132. Sci Rep 6:22848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rhodes LV, Martin EC, Segar HC, Miller DF, Buechlein A, Rusch DB, Nephew KP, Burow ME, Collins-Burow BM (2015) Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget 6:16638–16652

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rigalli JP, Tocchetti GN, Arana MR, Villanueva SS, Catania VA, Theile D, Ruiz ML, Weiss J (2016) The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett 376:165–172

    Article  CAS  Google Scholar 

  114. Rokavec M, Li H, Jiang L, Hermeking H (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol 6:214–230

    Article  CAS  Google Scholar 

  115. Roscigno G, Puoti I, Giordano I, Donnarumma E, Russo V, Affinito A, Adamo A, Quintavalle C, Todaro M, Vivanco MD et al (2017) MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget 8:19507–19521

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ross SA, Davis CD (2014) The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 34:305–336

    Article  CAS  PubMed  Google Scholar 

  117. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  118. Sayeed A, Bracci M, Lazzarini R, Tomasetti M, Amati M, Lucarini G, Di Primio R, Santarelli L (2017) Use of potential dietary phytochemicals to target miRNA: promising option for breast cancer prevention and treatment? J Funct Foods 28:177–193

    Article  CAS  Google Scholar 

  119. Setijono SR, Park M, Kim G, Kim Y, Cho KW, Song SJ (2018) miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun 496:826–833

    Article  CAS  Google Scholar 

  120. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA (2016) microRNA therapeutics in cancer—an emerging concept. EBioMedicine 12:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shen G, Li X, Jia YF, Piazza GA, Xi Y (2013) Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin 34:336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shi W, Bruce J, Lee M, Yue S, Rowe M, Pintilie M, Kogo R, Bissey PA, Fyles A, Yip KW et al (2016) MiR-449a promotes breast cancer progression by targeting CRIP2. Oncotarget 7:18906–18918

    PubMed  PubMed Central  Google Scholar 

  123. Slaby O, Sachlova M, Brezkova V, Hezova R, Kovarikova A, Bischofová S, Sevcikova S, Bienertova-Vasku J, Vasku A, Svoboda M et al (2013) Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer 65:247–254

    Article  CAS  PubMed  Google Scholar 

  124. Song J, Shao Q, Li C, Liu H, Li J, Wang Y, Song W, Li L, Wang G, Shao Z et al (2017) Effects of microRNA-21 on apoptosis by regulating the expression of PTEN in diffuse large B-cell lymphoma. Medicine 96:e7952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R et al (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6:408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Srivastava SK, Arora S, Averett C, Singh S, Singh AP (2015) Modulation of microRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. Biomed Res Int 2015:848710

    PubMed  PubMed Central  Google Scholar 

  127. Takahashi RU, Miyazaki H, Ochiya T (2015) The roles of MicroRNAs in breast cancer. Cancers (Basel) 7:598–616

    Article  CAS  Google Scholar 

  128. Tan W, Liu B, Qu S, Liang G, Luo W, Gong C (2017) MicroRNAs and cancer: key paradigms in molecular therapy. Oncol Lett 15:2735–2742

    PubMed  PubMed Central  Google Scholar 

  129. Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J (2015) Breast cancer: epidemiology and etiology. Cell Biochem Biophys 72:333–338

    Article  CAS  PubMed  Google Scholar 

  130. Tarallo S, Pardini B, Mancuso G, Rosa F, Di Gaetano C, Rosina F, Vineis P, Naccarati A (2014) MicroRNA expression in relation to different dietary habits: a comparison in stool and plasma samples. Mutagenesis 29:385–391

    Article  CAS  PubMed  Google Scholar 

  131. Treiber T, Treiber N, Meister G (2018) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20:5–20

    Article  CAS  Google Scholar 

  132. Tsai HP, Huang SF, Li CF, Chien HT, Chen SC (2018) Differential microRNA expression in breast cancer with different onset age. PLoS One 13:e0191195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK et al (2018) Plant natural modulators in breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J 9:403–419

    Article  PubMed  Google Scholar 

  134. Ustianenko D, Chiu HS, Treiber T, Weyn-Vanhentenryck SM, Treiber N, Meister G, Zhang C (2018) LIN28 selectively modulates a subclass of Let-7 MicroRNAs. Mol Cell 71:271–283.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D (2018) The “Yin and Yang” of natural compounds in anticancer therapy of triple-negative breast cancers. Cancers (Basel) 10:346

    Article  Google Scholar 

  137. Varinska L, Gal P, Mojzisova G, Mirossay L, Mojzis J (2015) Soy and breast cancer: focus on angiogenesis. Int J Mol Sci 16:11728–11749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Venkatadri R, Muni T, Iyer AK, Yakisich JS, Azad N (2016) Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis 7:e2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang W, Ren F, Wu Q, Jiang D, Li H, Shi H (2014a) MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor A through the PI3 K/AKT and MAPK/ERK pathways in ovarian cancer. Oncol Rep 32:2127–2133

    Article  CAS  PubMed  Google Scholar 

  140. Wang X, He H, Lu Y, Ren W, Teng KY, Chiang CL, Yang Z, Yu B, Hsu S, Jacob ST et al (2014b) Indole-3-carbinol inhibits tumorigenicity of hepatocellular carcinoma cells via suppression of microRNA-21 and upregulation of phosphatase and tensin homolog. Biochim Biophys Acta 1853:244–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang CZ, Yuan P, Li Y (2015) MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int J Clin Exp Pathol 8:6547–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang Y, Zeng J, Pan J, Geng X, Liu Y, Wu J, Song P, Wang Y, Jia J, Wang L (2016) MicroRNA-200c is involved in proliferation of gastric cancer by directly repressing p27Kip1. Biochem Biophys Rep 8:227–233

    PubMed  PubMed Central  Google Scholar 

  143. Wang DX, Zou YJ, Zhuang XB, Chen SX, Lin Y, Li WL, Lin JJ, Lin ZQ (2017) Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacol Sin 38:241–251

    Article  CAS  PubMed  Google Scholar 

  144. Wang D, Tang L, Wu H, Wang K, Gu D (2018a) MiR-127-3p inhibits cell growth and invasiveness by targeting ITGA6 in human osteosarcoma. IUBMB Life 70:411–419

    Article  CAS  PubMed  Google Scholar 

  145. Wang K, Tan SL, Lu Q, Xu R, Cao J, Wu SQ, Wang YH, Zhao XK, Zhong ZH (2018b) Curcumin suppresses microRNA-7641-mediated regulation of p16 expression in bladder cancer. Am J Chin Med 46:1357–1368

    Article  CAS  PubMed  Google Scholar 

  146. Wang Y, Wang L, Chen C, Chu X (2018c) New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications. Mol Cancer 17:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741

    Article  CAS  PubMed  Google Scholar 

  148. Wei D, Yang L, Lv B, Chen L (2017) Genistein suppresses retinoblastoma cell viability and growth and induces apoptosis by upregulating miR-145 and inhibiting its target ABCE1. Mol Vis 23:385–394

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Weiss CN, Ito K (2017) A macro view of microRNAs: the discovery of MicroRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol 334:99–175

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wilk G, Braun R (2018) regQTLs: single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors. PLoS Genet 14:e1007837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Winther M, Alsner J, Sørensen BS, Wittrup CF, Tramm T, Baeksgaard L, Hofland K, Holtved E, Nordsmark M (2016) Hypoxia-regulated MicroRNAs in gastroesophageal cancer. Anticancer Res 36:721–730

    CAS  PubMed  Google Scholar 

  152. Wu Y, Song Y, Xiong Y, Wang X, Xu K, Han B, Bai Y, Li L, Zhang Y, Zhou L (2017) MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem 43:945–958

    Article  CAS  PubMed  Google Scholar 

  153. Xu H, Hu Y, Qiu W (2017) Potential mechanisms of microRNA-129-5p in inhibiting cell processes including viability, proliferation, migration and invasiveness of glioblastoma cells U87 through targeting FNDC3B. Biomed Pharmacother 87:405–411

    Article  CAS  PubMed  Google Scholar 

  154. Xu X, Gao F, Wang J, Tao L, Ye J, Ding L, Ji W, Chen X (2018) MiR-122-5p inhibits cell migration and invasion in gastric cancer by down-regulating DUSP4. Cancer Biol Ther 19:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang X, Zhao S, Sun X, Cui L, Pan L et al (2016) MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 7:84508–84519

    PubMed  PubMed Central  Google Scholar 

  156. Yamada S, Tsukamoto S, Huang Y, Makio A, Kumazoe M, Yamashita S, Tachibana H (2016) Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci Rep 6:19225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang Y, Zhang J, Xia T, Li G, Tian T, Wang M, Wang R, Zhao L, Yang Y, Lan K et al (2016) MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma. Oncol Rep 36:2553–2562

    Article  CAS  PubMed  Google Scholar 

  158. Yang X, Shi L, Yi C, Yang Y, Chang L, Song D (2017) MiR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1. Am J Cancer Res 7:1738–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang H, Zhang H, Ge S, Ning T, Bai M, Li J, Li S, Sun W, Deng T, Zhang L et al (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther 26:2466–2475

    Article  CAS  PubMed  Google Scholar 

  160. Yuan JM (2013) Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr 98(6 Suppl):1676S–1681S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zendehdel E, Abdollahi E, Momtazi-Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A (2018) The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 120:4739–4747

    Article  CAS  PubMed  Google Scholar 

  162. Zhan Y, Liang X, Li L, Wang B, Ding F, Li Y, Wang X, Zhan Q, Liu Z (2016) MicroRNA-548j functions as a metastasis promoter in human breast cancer by targeting Tensin1. Mol Oncol 10:838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang Y, Callaway EC (2002) High cellular accumulation of sulphoraphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J364(Pt 1):301–307

    Article  Google Scholar 

  164. Zhang YQ, Wang WY, Xue JX, Xu Y, Fan P, Caughey BA, Tan WW, Cao GQ, Jiang LL, Lu Y et al (2016) Expression profile on solid subtype of invasive lung adenocarcinoma reveals a panel of four miRNAs to be associated with poor prognosis in Chinese patients. J Cancer 7:1610–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H (2014) Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genom 15(Suppl 11):S3

    Article  Google Scholar 

  166. Zhu J, Ye Q, Chang L, Xiong W, He Q, Li W (2015) Upregulation of miR-195 enhances the radiosensitivity of breast cancer cells through the inhibition of BCL-2. Int J Clin Exp Med 8:9142–9148

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Zubor P, Kubatka P, Dankova Z, Gondova A, Kajo K, Hatok J, Samec M, Jagelkova M, Krivus S, Holubekova V et al (2018) miRNA in a multiomic context for diagnosis, treatment monitoring and personalized management of metastatic breast cancer. Future Oncol 14:1847–1867

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic under the contracts no. VEGA 1/0136/19, 1/0124/17 and the Slovak Research and Development Agency under the contract no. APVV-16-0021. This publication is the result of the projects implementation: “Center of Excellence of Perinatology Reseach (CEPV II)”, ITMS: 26220120036 supported by the Operational Programme Research and Innovation funded by the ERDF and “Molecular diagnosis of cervical cancer”, ITMS: 26220220113 supported by the Operational Programme Research and Innovation funded by the ERDF. This work was supported by Government of Russian Federation Grant 08-08.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Peter Kubatka or Peter Kruzliak or Dietrich Büsselberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Patients have not been involved in the study.

Human and animal rights

No experiments have been performed including patients and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samec, M., Liskova, A., Kubatka, P. et al. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J Cancer Res Clin Oncol 145, 1665–1679 (2019). https://doi.org/10.1007/s00432-019-02940-0

Download citation

Keywords

  • microRNAs
  • Phytochemicals
  • Plant-derived food
  • Cancer
  • Carcinogenesis