Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561
Article
CAS
PubMed
PubMed Central
Google Scholar
Ara MN, Hyodo M, Ohga N, Hida K, Harashima H (2012) Development of a novel dna aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based selex method. PLos One. 7(12):e50174
Article
CAS
PubMed
PubMed Central
Google Scholar
Ara MN, Hyodo M, Ohga N, Akiyama K, Hida K, Hida Y et al (2014) Identification and expression of troponin t, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer Med 3(4):825–834
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashrafuzzaman M (2014) Aptamers as both drugs and drug-carriers. BioMed Res Int 2014:697923–697923
Article
CAS
PubMed
PubMed Central
Google Scholar
Attarwala H (2010) Tgn1412: from discovery to disaster. J Young Pharm 2(3):332
Article
CAS
PubMed
PubMed Central
Google Scholar
Baird GS (2010) Where are all the aptamers? Am J Clin Pathol 134(4):529–531
Article
PubMed
Google Scholar
Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the g-rich oligonucleotide as1411 as a novel treatment for cancer. Exp Mol Pathol 86(3):151–164
Article
CAS
PubMed
PubMed Central
Google Scholar
Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20
Article
CAS
PubMed
Google Scholar
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M (2018) SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154:132–155
Article
CAS
PubMed
Google Scholar
Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10(5):345
Article
CAS
PubMed
Google Scholar
Bouvier-Müller A, Ducongé F (2018) Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 134:94–106
Article
CAS
PubMed
Google Scholar
Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH (2013) Dimeric dna aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Ther Nucleic Acids 2(7):e107
Article
CAS
PubMed
PubMed Central
Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424
Article
PubMed
Google Scholar
Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193
Article
CAS
PubMed
PubMed Central
Google Scholar
Buff MCR, Schäfer F, Wulffen B, Müller J, Pötzsch B, Heckel A et al (2009) Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res 38(6):2111–2118
Article
CAS
PubMed
PubMed Central
Google Scholar
Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J (2009) Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev 35(4):354–363
Article
CAS
PubMed
Google Scholar
Carrasco-Ramiro F, Peiró-Pastor R, Aguado B (2017) Human genomics projects and precision medicine. Gene Ther 24(9):551
Article
CAS
PubMed
Google Scholar
Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41(3):535–561
Article
CAS
PubMed
Google Scholar
Chang YM, Donovan MJ, Tan W (2013) Using aptamers for cancer biomarker discovery. J Nucleic Acids 2013(21):817350
PubMed
PubMed Central
Google Scholar
Cheng C, Chen YH, Lennox KA, Behlke MA, Davidson BL (2013) In vivo selex for identification of brain-penetrating aptamers. Mol Ther Nucleic Acids 2(1):e67
Article
PubMed
PubMed Central
Google Scholar
Chodon T, Koya RC, Odunsi K (2015) Active immunotherapy of cancer. Immunol Investig 44(8):817
Article
CAS
Google Scholar
Cosphiadi I, Atmakusumah TD, Siregar NC, Muthalib A, Harahap A, Mansyur M (2018) Bone metastasis in advanced breast cancer: analysis of gene expression microarray. Clin Breast Cancer 15:e1117–e1122
Article
CAS
Google Scholar
Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30(20):108
Article
Google Scholar
Cui J, Germer K, Wu T, Wang J, Luo J, Wang SC et al (2012) Cross-talk between her2 and med1 regulates tamoxifen resistance of human breast cancer cells. Can Res 72(21):5625–5634
Article
CAS
Google Scholar
Demko S, Summers JP, Pazdur R (2008) Fda drug approval summary: alemtuzumab as single-agent treatment for b-cell chronic lymphocytic leukemia. Oncologist 13(2):167–174
Article
CAS
PubMed
Google Scholar
Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R (2019) PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol 234(2):1313–1325
Article
CAS
PubMed
Google Scholar
Di Gioia D, Stieber P, Schmidt GP, Nagel D, Heinemann V, Baur-Melnyk A (2015) Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase. Br J Cancer 112(5):809
Article
PubMed
PubMed Central
Google Scholar
Elle IC, Karlsen KK, Terp MG, Larsen N, Nielsen R, Derbyshire N et al (2015) Selection of lna-containing dna aptamers against recombinant human CD73. Mol Biosyst 11(5):1260–1270
Article
CAS
PubMed
Google Scholar
Eyetech Study Group (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22(2):143–152
Article
Google Scholar
Fan X, Guo Y, Wang L, Xiong X, Zhu L, Fang K (2016) Diagnosis of prostate cancer using anti-psma aptamer a10-3.2-oriented lipid nanobubbles. Int J Nanomed 11:3939–3950
Article
CAS
Google Scholar
Friedman CF, Proverbssingh TA, Postow MA (2016) Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol 2(10):1346
Article
PubMed
Google Scholar
Ganji A, Varasteh A, Sankian M (2016) Aptamers: new arrows to target dendritic cells. J Drug Target 24(1):1–12
Article
CAS
PubMed
Google Scholar
Gianfranco B, Gurdev P, Shubina Irina ZH, Valter C, Sergio G, Marco B et al (2013) Update on the challenges and recent advances in cancer immunotherapy. Immunotargets Ther 2:39
Article
Google Scholar
Gissel M, Orfeo T, Foley JH, Butenas S (2012) Effect of BAX499 aptamer on tissue factor pathway inhibitor function and thrombin generation in models of hemophilia. Thromb Res 130(6):948–955
Article
CAS
PubMed
PubMed Central
Google Scholar
Gopinathan P, Hung LY, Wang CH, Chiang NJ, Wang YC, Shan YS, Lee GB (2017) Automated selection of aptamers against cholangiocarcinoma cells on an integrated microfluidic platform. Biomicrofluidics 11(4):044101
Article
CAS
PubMed
PubMed Central
Google Scholar
Grigera DE, Mello PA, Barbosa WL, Casiraghi JF, Grossmann RP, Peyret A (2013) Level of agreement among latin american glaucoma subspecialists on the diagnosis and treatment of glaucoma: results of an online survey. Arquivos Brasileiros De Oftalmologia 76(3):163–169
Article
PubMed
Google Scholar
Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M et al (2014) Chemically modified dna aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem 289(12):8706
Article
CAS
PubMed
PubMed Central
Google Scholar
Hah SS, Kang SM (2017) Pincers comprising antibody and aptamer conjugated via a linker which binds to the same target material and use thereof. U.S. Patent Application No. 15/108,753
Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C et al (2018) Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from mypathway, an open-label, phase IIa multiple basket study. J Clin Oncol 34(6)536–544
Article
Google Scholar
Hasegawa H, Taira K, Sode K, Ikebukuro K (2008) Improvement of aptamer affinity by dimerization. Sensors 8(2):1090
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa H, Savory N, Abe K, Ikebukuro K (2016) Methods for improving aptamer binding affinity. Molecules 21(4):421
Article
CAS
PubMed
PubMed Central
Google Scholar
Heo K, Min SW, Sung HJ, Kim HG, Kim HJ, Kim YH et al (2016) An aptamer–antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. J Control Release 229:1–9
Article
CAS
PubMed
Google Scholar
Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA et al (2014) Ctla4 aptamer delivers stat3 sirna to tumor-associated and malignant t cells. J Clin Investig 124(7):2977–2987
Article
CAS
PubMed
PubMed Central
Google Scholar
Houdebine LM (2011) Production of human polyclonal antibodies by transgenic animals. Adv Biosci Biotechnol 2(03):138
Article
CAS
Google Scholar
Huang W, Qin M, Li Y, Cao Y, Wang W (2017) Dimerization of cell-adhesion molecules can increase their binding strength. Langmuir 33(6):1398–1404
Article
CAS
PubMed
Google Scholar
Hünniger T, Wessels H, Fischer C, Paschkekratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated selex of dna aptamers using magnetic separation and beaming. Anal Chem 86(21):10940–10947
Article
CAS
PubMed
Google Scholar
Jaffe GJ, Ciulla TA, Ciardella AP, Devin F, Dugel PU, Eandi CM, Ricci F (2017) Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial. Ophthalmology 124(2):224–234
Article
PubMed
Google Scholar
Jia W, Ren C, Wang L, Zhu B, Jia W, Gao M et al (2016) CD109 is identified as a potential nasopharyngeal carcinoma biomarker using aptamer selected by cell-SELEX. Oncotarget 7(34):55328
Article
PubMed
PubMed Central
Google Scholar
Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA et al (2017) Immunotherapy for triple-negative breast cancer: existing challenges and exciting prospects. Drug Resistant Updates 32:1–15
Article
Google Scholar
Juilleratjeanneret L, Schmitt F (2010) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 27(4):574–590
Article
CAS
Google Scholar
Kang S, Hah SS (2014) Improved ligand binding by antibody-aptamer pincers. Bioconjug Chem 25(8):1421
Article
CAS
PubMed
Google Scholar
Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46(6):459–477
Article
CAS
PubMed
PubMed Central
Google Scholar
Karagiannis SN, Josephs DH, Karagiannis P, Gilbert AE, Saul L, Rudman SM et al (2012) Recombinant ige antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother 61(9):1547–1564
Article
CAS
PubMed
Google Scholar
Kelly L, Kratschmer C, Maier KE, Yan AC, Levy M (2016) Improved synthesis and in vitro evaluation of an aptamer ribosomal toxin conjugate. Nucleic Acid Ther 26(3):156–165
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerns SL, Ostrer H, Rosenstein BS (2014) Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov 4(2):155
Article
CAS
PubMed
PubMed Central
Google Scholar
Khedri M, Rafatpanah H, Abnous K, Ramezani P, Ramezani M (2015) Cancer immunotherapy via, nucleic acid aptamers. Int Immunopharmacol 29(2):926–936
Article
CAS
PubMed
Google Scholar
Kono K (2014) Current status of cancer immunotherapy. J Stem Cells Regen Med 10(1):8
CAS
PubMed
PubMed Central
Google Scholar
Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA (2017) Tlr-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 89:127
Article
CAS
PubMed
Google Scholar
Kratschmer C, Levy M (2018) Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol Ther Nucleic Acids 10:227–236
Article
CAS
PubMed
Google Scholar
Kruspe S, Mittelberger F, Szameit K, Hahn U (2014) Aptamers as drug delivery vehicles. ChemMedChem 9(9):1998–2011
Article
CAS
PubMed
Google Scholar
Lee JW, Kim HJ, Heo K (2015) Therapeutic aptamers: developmental potential as anticancer drugs. BMB Rep 48(4):234
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196
Article
CAS
PubMed
Google Scholar
Lehman JM, Gwin ME, Massion PP (2017) Immunotherapy and targeted therapy for small cell lung cancer: there is hope. Curr Oncol Rep 19(7):49
Article
CAS
PubMed
Google Scholar
Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H et al (2010) U.S. food and drug administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin Cancer Res 16(16):4331–4338
Article
CAS
PubMed
Google Scholar
Leung E, Landa G (2013) Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol 6(5):565–579
Article
CAS
PubMed
Google Scholar
Li W, Yang X, He L, Wang K, Wang Q, Jin H et al (2016) Self-assembled dna nanocentipede as multivalent drug carrier for targeted delivery. ACS Appl Mater Interfaces 8(39):25733
Article
CAS
PubMed
Google Scholar
Li WM, Zhou LL, Zheng M, Fang J (2018) Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by cell-SELEX. Mol Ther Nucleic Acids 12:707–717
Article
CAS
PubMed
PubMed Central
Google Scholar
Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, Laanmets P (2016) Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387(10016):349–356
Article
CAS
PubMed
Google Scholar
Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG (2012) Targeted immunotherapy of cancer with car t cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962
Article
CAS
PubMed
Google Scholar
Liu Q, Jin C, Wang Y, Fang X, Zhang X, Chen Z et al (2014) Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater 6(4):e95
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Ig DLT, Gutiérrezrivera MC, Wang B, Liu Y, Dai L et al (2015) Detection of autoantibodies to multiple tumor-associated antigens (taas) in the immunodiagnosis of breast cancer. Tumour Biol J Int Soc Oncodev Biol Med 36(2):1307–1312
Article
CAS
Google Scholar
Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2(7):616–631
Article
CAS
PubMed
PubMed Central
Google Scholar
Maimaitiyiming Y, Yang C, Wang Y, Hussain L, Naranmandura H (2019) Selection and characterization of novel DNA aptamer against colorectal carcinoma Caco-2 cells. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1737
Article
PubMed
Google Scholar
Mcconigley R, Holloway K, Smith J, Halkett G, Keyser J, Aoun S et al (2011) The diagnosis and treatment decisions of cancer patients in rural western australia. Cancer Nurs 34(4):E1
Article
PubMed
Google Scholar
Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nat Clin Pract Oncol 2(3):480–489
Google Scholar
Menon A, Handattu S, Shetty J, Girisha BS (2018) Study of cutaneous adverse effects of cancer chemotherapy. Clin Dermatol Rev 2(1):19
Article
Google Scholar
Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524
Article
CAS
PubMed
Google Scholar
Mi J, Zhang X, Giangrande PH, McNamara JO, Nimjee SM, Sarraf-Yazdi S, Clary BM (2005) Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun 338(2):956–963
Article
CAS
PubMed
Google Scholar
Mody K, Baldeo C, Bekaii-Saab T (2018) Antiangiogenic therapy in colorectal cancer. Cancer J 24(4):165–170
Article
PubMed
Google Scholar
Moja L, Brambilla C, Compagnoni A, Pistotti V (2006) Trastuzumab containing regimens for early breast cancer. The cochrane library. Wiley, New York
Google Scholar
Mongelard F, Bouvet P (2010) As-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12(1):107–114
CAS
PubMed
Google Scholar
Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody–aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109(3):808–817
Article
CAS
PubMed
Google Scholar
Parekh P, Kamble S, Zhao N, Zeng Z, Portier BP, Zu Y (2013) Immunotherapy of CD30-expressing lymphoma using a highly stable ssdna aptamer. Biomaterials 34(35):8909–8917
Article
CAS
PubMed
PubMed Central
Google Scholar
Pastor F, Soldevilla MM, Villanueva H, Kolonias D, Inoges S, Cerio ALD et al (2013) Cd28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids 2(6):e98
Article
CAS
PubMed
PubMed Central
Google Scholar
Perlmutter J, Bell SK, Darien G (2013) Cancer research advocacy: past, present, and future. Can Res 73(15):4611–4615
Article
CAS
Google Scholar
Plaks V, Koopman CD, Werb Z (2015) Circulating tumor cells. Science 341(6151):1186–1188
Article
Google Scholar
Poniková S, Tlučková K, Antalík M, Víglaský V, Hianik T (2011) The circular dichroism and differential scanning calorimetry study of the properties of dna aptamer dimers. Biophys Chem 155(1):29–35
Article
CAS
PubMed
Google Scholar
Povsic TJ, Vavalle JP, Alexander JH, Aberle LH, Zelenkofske SL, Becker RC et al (2014) Use of the reg1 anticoagulation system in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the phase ii radar-pci study. Eurointerv J Europcr Collab Work Group Interv Cardiol Eur Soc Cardiol 10(4):431–438
Google Scholar
Prodeus A, Abdul-Wahid A, Fischer NW, Huang HB, Cydzik M, Gariépy J (2015) Targeting the pd-1/pd-l1 immune evasion axis with dna aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids 4(4):e237
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin JJ, Wang XR, Wang P, Ren PF, Shi JX, Zhang HF et al (2014) Mini-array of multiple tumor-associated antigens (taas) in the immunodiagnosis of esophageal cancer. Asian Pac J Cancer Prev APJCP 15(6):2635–2640
Article
PubMed
Google Scholar
Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, Bollard CM (2017) Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Investig 127(9):3462–3471
Article
PubMed
PubMed Central
Google Scholar
Roesch A (2014) Tumor heterogeneity and plasticity as elusive drivers for resistance to mapk pathway inhibition in melanoma. Oncogene 34(23):2951–2957
Article
CAS
PubMed
Google Scholar
Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E (2003) Multivalent rna aptamers that inhibit ctla-4 and enhance tumor immunity. Can Res 63(21):7483–7489
CAS
Google Scholar
Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release Off J Control Release Soc 153(1):16–22
Article
CAS
Google Scholar
Shalapour S, Karin M (2015) Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Investig 125(9):3347–3355
Article
PubMed
PubMed Central
Google Scholar
Soldevilla MM, Villanueva H, Pastor F (2016a) Aptamers: a feasible technology in cancer immunotherapy. J Immunol Res 2016(21):1–12
Article
CAS
Google Scholar
Soldevilla MM, Villanueva H, Casares N, Lasarte JJ, Bendandi M, Inoges S et al (2016b) Mrp1-cd28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells. Oncotarget 7(17):23182–23196
Article
PubMed
PubMed Central
Google Scholar
Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D et al (2013) Selection of dna aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85(8):4141–4149
Article
CAS
PubMed
Google Scholar
Souriau C, Hudson PJ (2005) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 3(2):305–318
Article
Google Scholar
Spiel AO, Mayr FB, Ladani N, Wagner PG, Schaub RG, Gilbert JC et al (2009) The aptamer arc1779 is a potent and specific inhibitor of von willebrand factor mediated ex vivo platelet function in acute myocardial infarction. Platelets 20(5):334–340
Article
CAS
PubMed
Google Scholar
Stefan DC, Seleiro E (2016) International collaboration in cancer research. Cancer research and clinical trials in developing countries. Springer International Publishing, Berlin
Book
Google Scholar
Sundaram P, Wower J, Byrne ME (2012) A nanoscale drug delivery carrier using nucleic acid aptamers for extended release of therapeutic. Nanomed Nanotechnol Biol Med 8(7):1143–1151
Article
CAS
Google Scholar
Swaika A, Hammond WA, Joseph RW (2015) Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol Immunol 67(2):4–17
Article
CAS
PubMed
Google Scholar
Tandan R, Hehir NM, Waheed W, Howard DB (2017) Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve 56(2):185–196
Article
CAS
PubMed
Google Scholar
Torres-Collado A, Jazirehi A (2018) Overcoming resistance of human non-Hodgkin’s lymphoma to CD19-CAR CTL therapy by celecoxib and histone deacetylase inhibitors. Cancers 10(6):200
Article
CAS
PubMed Central
Google Scholar
Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage t4 DNA polymerase. Science 249(4968):505–510
Article
CAS
PubMed
Google Scholar
Van Eijk LT, John AS, Schwoebel F, Summo L, Vauléon S, Zöllner S, Riecke K (2014) Effect of the anti-hepcidin Spiegelmer® lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 124(17):2643–2646
Article
CAS
PubMed
PubMed Central
Google Scholar
Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of spiegelmer®; therapeutics. Drug Discov Today 20(1):147–155
Article
CAS
PubMed
Google Scholar
Vinores SA (2006) Pegaptanib in the treatment of wet, age-related macular degeneration. Int J Nanomed 1(3):263–268
CAS
Google Scholar
Vmd CU, Johnstone C, MRCVS (2012) Recent advances in the application of antibodies as therapeutics. Future Med Chem 4(1):73–86
Article
CAS
Google Scholar
Vu CQ, Rotkrua P, Tantirungrotechai Y, Soontornworajit B (2017) Oligonucleotide hybridization combined with competitive antibody binding for the truncation of a high-affinity aptamer. ACS Comb Sci 19(10):609–617
Article
CAS
PubMed
Google Scholar
Wang C, Huang S (2017) Drug development against metastatic cancers. Yale J Biol Med 90(1):119–123
CAS
PubMed
PubMed Central
Google Scholar
Weiner LM, Surana R, Wang S (2010). Antibodies and cancer therapy: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinstein IB, Case K (2008) The history of cancer research: introducing an AACR centennial series. Can Res 68(17):6861–6862
Article
CAS
Google Scholar
Wilkes LM, White K, Mohan S, Beale B (2006) Accessing metropolitan cancer care services: practical needs of rural families. J Psychosoc Oncol 24(24):85–101
Article
PubMed
Google Scholar
Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chem Eur J 14(6):1769–1775
Article
CAS
PubMed
Google Scholar
Xu HM (2014) Th1 cytokine-based immunotherapy for cancer. Hepatobiliary Pancreat Dis Int 13(5):482–494
Article
CAS
PubMed
Google Scholar
Xu W, Siddiqui IA, Nihal M, Pilla S, Rosenthal K, Mukhtar H et al (2013) Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34(21):5244–5253
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Wang Y, Ge MH, Fu YJ, Hao R, Islam K, Naranmandura H (2019) Rapid identification of specific DNA aptamers precisely targeting CD33 positive leukemia cells through a paired cell-based approach. Biomater Sci 7(3):938–950
Article
CAS
PubMed
Google Scholar
Zeng Z, Parekh P, Li Z, Shi ZZ, Tung CH, Zu Y (2014a) Specific and sensitive tumor imaging using biostable oligonucleotide aptamer probes. Theranostics 4(9):945–952
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng Z, Tung CH, Zu Y (2014b) A cancer cell-activatable aptamer-reporter system for one-step assay of circulating tumor cells. Mol Ther Nucleic Acids 3(8):e184–e184
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Hamasaki A, Toshiro E, Aoyama Y, Ito Y (2000) Automated in vitro selection to obtain functional oligonucleotides. Nucleic Acids Symp 44(44):219
Article
Google Scholar
Zhang Y, Leonard M, Yi S, Yang Y, Dan S, Guo P et al (2016) Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional prna nanoparticles. ACS Nano 11(1):335–346
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou G, Latchoumanin O, Bagdesar M, Hebbard L, Duan W, Liddle C et al (2017) Aptamer-based therapeutic approaches to target cancer stem cells. Theranostics 7(16):3948–3961
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu G, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB et al (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J 7(7):1630–1636
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C et al (2013) Self-assembled, aptamer-tethered dna nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110(20):7998–8003
Article
PubMed
PubMed Central
Google Scholar
Zhu HH, Qin YZ, Huang XJ (2014) Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med 370(19):1864–1866
Article
CAS
PubMed
Google Scholar