Skip to main content

Novel insights into the role of aptamers in the fight against cancer

Abstract

Purpose

Aptamers are a class of single-stranded nucleic acid (DNA or RNA) oligonucleotides that are screened in vitro by a technique called systematic evolution of ligands by exponential enrichment (SELEX). They have stable three-dimensional structures that can bind to various targets with high affinity and specificity. Due to distinct properties such as easy synthesis, high stability, small size, low toxicity and immunogenicity, they have been largely studied as anticancer agents/tools. Consequently, aptamers are starting to play important roles in disease prevention, diagnosis and therapy. This review focuses on studies that evaluated the effect of aptamers on various aspects of cancer therapy. It also provides novel and unique insights into the role of aptamers on the fight against cancer.

Methods

We reviewed literatures about the role of aptamers against cancer from PUBMED databases in this article.

Results

Here, we summarized the role of aptamers on the fight against cancer in a unique point of view. Meanwhile, we presented novel ideas such as aptamer–pool–drug conjugates for the treatment of refractory cancers.

Conclusions

Aptamers and antibodies should form a “coalition” against cancers to maximize their advantages and minimize disadvantages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ara MN, Hyodo M, Ohga N, Hida K, Harashima H (2012) Development of a novel dna aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based selex method. PLos One. 7(12):e50174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ara MN, Hyodo M, Ohga N, Akiyama K, Hida K, Hida Y et al (2014) Identification and expression of troponin t, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer Med 3(4):825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafuzzaman M (2014) Aptamers as both drugs and drug-carriers. BioMed Res Int 2014:697923–697923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attarwala H (2010) Tgn1412: from discovery to disaster. J Young Pharm 2(3):332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird GS (2010) Where are all the aptamers? Am J Clin Pathol 134(4):529–531

    Article  PubMed  Google Scholar 

  • Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the g-rich oligonucleotide as1411 as a novel treatment for cancer. Exp Mol Pathol 86(3):151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20

    Article  CAS  PubMed  Google Scholar 

  • Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M (2018) SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154:132–155

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10(5):345

    Article  CAS  PubMed  Google Scholar 

  • Bouvier-Müller A, Ducongé F (2018) Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 134:94–106

    Article  CAS  PubMed  Google Scholar 

  • Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH (2013) Dimeric dna aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Ther Nucleic Acids 2(7):e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buff MCR, Schäfer F, Wulffen B, Müller J, Pötzsch B, Heckel A et al (2009) Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res 38(6):2111–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J (2009) Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev 35(4):354–363

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Ramiro F, Peiró-Pastor R, Aguado B (2017) Human genomics projects and precision medicine. Gene Ther 24(9):551

    Article  CAS  PubMed  Google Scholar 

  • Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41(3):535–561

    Article  CAS  PubMed  Google Scholar 

  • Chang YM, Donovan MJ, Tan W (2013) Using aptamers for cancer biomarker discovery. J Nucleic Acids 2013(21):817350

    PubMed  PubMed Central  Google Scholar 

  • Cheng C, Chen YH, Lennox KA, Behlke MA, Davidson BL (2013) In vivo selex for identification of brain-penetrating aptamers. Mol Ther Nucleic Acids 2(1):e67

    Article  PubMed  PubMed Central  Google Scholar 

  • Chodon T, Koya RC, Odunsi K (2015) Active immunotherapy of cancer. Immunol Investig 44(8):817

    Article  CAS  Google Scholar 

  • Cosphiadi I, Atmakusumah TD, Siregar NC, Muthalib A, Harahap A, Mansyur M (2018) Bone metastasis in advanced breast cancer: analysis of gene expression microarray. Clin Breast Cancer 15:e1117–e1122

    Article  CAS  Google Scholar 

  • Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30(20):108

    Article  Google Scholar 

  • Cui J, Germer K, Wu T, Wang J, Luo J, Wang SC et al (2012) Cross-talk between her2 and med1 regulates tamoxifen resistance of human breast cancer cells. Can Res 72(21):5625–5634

    Article  CAS  Google Scholar 

  • Demko S, Summers JP, Pazdur R (2008) Fda drug approval summary: alemtuzumab as single-agent treatment for b-cell chronic lymphocytic leukemia. Oncologist 13(2):167–174

    Article  CAS  PubMed  Google Scholar 

  • Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R (2019) PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol 234(2):1313–1325

    Article  CAS  PubMed  Google Scholar 

  • Di Gioia D, Stieber P, Schmidt GP, Nagel D, Heinemann V, Baur-Melnyk A (2015) Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase. Br J Cancer 112(5):809

    Article  PubMed  PubMed Central  Google Scholar 

  • Elle IC, Karlsen KK, Terp MG, Larsen N, Nielsen R, Derbyshire N et al (2015) Selection of lna-containing dna aptamers against recombinant human CD73. Mol Biosyst 11(5):1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Eyetech Study Group (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22(2):143–152

    Article  Google Scholar 

  • Fan X, Guo Y, Wang L, Xiong X, Zhu L, Fang K (2016) Diagnosis of prostate cancer using anti-psma aptamer a10-3.2-oriented lipid nanobubbles. Int J Nanomed 11:3939–3950

    Article  CAS  Google Scholar 

  • Friedman CF, Proverbssingh TA, Postow MA (2016) Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol 2(10):1346

    Article  PubMed  Google Scholar 

  • Ganji A, Varasteh A, Sankian M (2016) Aptamers: new arrows to target dendritic cells. J Drug Target 24(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Gianfranco B, Gurdev P, Shubina Irina ZH, Valter C, Sergio G, Marco B et al (2013) Update on the challenges and recent advances in cancer immunotherapy. Immunotargets Ther 2:39

    Article  Google Scholar 

  • Gissel M, Orfeo T, Foley JH, Butenas S (2012) Effect of BAX499 aptamer on tissue factor pathway inhibitor function and thrombin generation in models of hemophilia. Thromb Res 130(6):948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinathan P, Hung LY, Wang CH, Chiang NJ, Wang YC, Shan YS, Lee GB (2017) Automated selection of aptamers against cholangiocarcinoma cells on an integrated microfluidic platform. Biomicrofluidics 11(4):044101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigera DE, Mello PA, Barbosa WL, Casiraghi JF, Grossmann RP, Peyret A (2013) Level of agreement among latin american glaucoma subspecialists on the diagnosis and treatment of glaucoma: results of an online survey. Arquivos Brasileiros De Oftalmologia 76(3):163–169

    Article  PubMed  Google Scholar 

  • Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M et al (2014) Chemically modified dna aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem 289(12):8706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hah SS, Kang SM (2017) Pincers comprising antibody and aptamer conjugated via a linker which binds to the same target material and use thereof. U.S. Patent Application No. 15/108,753

  • Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C et al (2018) Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from mypathway, an open-label, phase IIa multiple basket study. J Clin Oncol 34(6)536–544

    Article  Google Scholar 

  • Hasegawa H, Taira K, Sode K, Ikebukuro K (2008) Improvement of aptamer affinity by dimerization. Sensors 8(2):1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa H, Savory N, Abe K, Ikebukuro K (2016) Methods for improving aptamer binding affinity. Molecules 21(4):421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo K, Min SW, Sung HJ, Kim HG, Kim HJ, Kim YH et al (2016) An aptamer–antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. J Control Release 229:1–9

    Article  CAS  PubMed  Google Scholar 

  • Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA et al (2014) Ctla4 aptamer delivers stat3 sirna to tumor-associated and malignant t cells. J Clin Investig 124(7):2977–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houdebine LM (2011) Production of human polyclonal antibodies by transgenic animals. Adv Biosci Biotechnol 2(03):138

    Article  CAS  Google Scholar 

  • Huang W, Qin M, Li Y, Cao Y, Wang W (2017) Dimerization of cell-adhesion molecules can increase their binding strength. Langmuir 33(6):1398–1404

    Article  CAS  PubMed  Google Scholar 

  • Hünniger T, Wessels H, Fischer C, Paschkekratzin A, Fischer M (2014) Just in time-selection: a rapid semiautomated selex of dna aptamers using magnetic separation and beaming. Anal Chem 86(21):10940–10947

    Article  CAS  PubMed  Google Scholar 

  • Jaffe GJ, Ciulla TA, Ciardella AP, Devin F, Dugel PU, Eandi CM, Ricci F (2017) Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial. Ophthalmology 124(2):224–234

    Article  PubMed  Google Scholar 

  • Jia W, Ren C, Wang L, Zhu B, Jia W, Gao M et al (2016) CD109 is identified as a potential nasopharyngeal carcinoma biomarker using aptamer selected by cell-SELEX. Oncotarget 7(34):55328

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA et al (2017) Immunotherapy for triple-negative breast cancer: existing challenges and exciting prospects. Drug Resistant Updates 32:1–15

    Article  Google Scholar 

  • Juilleratjeanneret L, Schmitt F (2010) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 27(4):574–590

    Article  CAS  Google Scholar 

  • Kang S, Hah SS (2014) Improved ligand binding by antibody-aptamer pincers. Bioconjug Chem 25(8):1421

    Article  CAS  PubMed  Google Scholar 

  • Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46(6):459–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karagiannis SN, Josephs DH, Karagiannis P, Gilbert AE, Saul L, Rudman SM et al (2012) Recombinant ige antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother 61(9):1547–1564

    Article  CAS  PubMed  Google Scholar 

  • Kelly L, Kratschmer C, Maier KE, Yan AC, Levy M (2016) Improved synthesis and in vitro evaluation of an aptamer ribosomal toxin conjugate. Nucleic Acid Ther 26(3):156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerns SL, Ostrer H, Rosenstein BS (2014) Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov 4(2):155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khedri M, Rafatpanah H, Abnous K, Ramezani P, Ramezani M (2015) Cancer immunotherapy via, nucleic acid aptamers. Int Immunopharmacol 29(2):926–936

    Article  CAS  PubMed  Google Scholar 

  • Kono K (2014) Current status of cancer immunotherapy. J Stem Cells Regen Med 10(1):8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA (2017) Tlr-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 89:127

    Article  CAS  PubMed  Google Scholar 

  • Kratschmer C, Levy M (2018) Targeted delivery of auristatin-modified toxins to pancreatic cancer using aptamers. Mol Ther Nucleic Acids 10:227–236

    Article  CAS  PubMed  Google Scholar 

  • Kruspe S, Mittelberger F, Szameit K, Hahn U (2014) Aptamers as drug delivery vehicles. ChemMedChem 9(9):1998–2011

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Kim HJ, Heo K (2015) Therapeutic aptamers: developmental potential as anticancer drugs. BMB Rep 48(4):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196

    Article  CAS  PubMed  Google Scholar 

  • Lehman JM, Gwin ME, Massion PP (2017) Immunotherapy and targeted therapy for small cell lung cancer: there is hope. Curr Oncol Rep 19(7):49

    Article  CAS  PubMed  Google Scholar 

  • Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H et al (2010) U.S. food and drug administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clin Cancer Res 16(16):4331–4338

    Article  CAS  PubMed  Google Scholar 

  • Leung E, Landa G (2013) Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol 6(5):565–579

    Article  CAS  PubMed  Google Scholar 

  • Li W, Yang X, He L, Wang K, Wang Q, Jin H et al (2016) Self-assembled dna nanocentipede as multivalent drug carrier for targeted delivery. ACS Appl Mater Interfaces 8(39):25733

    Article  CAS  PubMed  Google Scholar 

  • Li WM, Zhou LL, Zheng M, Fang J (2018) Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by cell-SELEX. Mol Ther Nucleic Acids 12:707–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, Laanmets P (2016) Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387(10016):349–356

    Article  CAS  PubMed  Google Scholar 

  • Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG (2012) Targeted immunotherapy of cancer with car t cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Jin C, Wang Y, Fang X, Zhang X, Chen Z et al (2014) Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater 6(4):e95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Ig DLT, Gutiérrezrivera MC, Wang B, Liu Y, Dai L et al (2015) Detection of autoantibodies to multiple tumor-associated antigens (taas) in the immunodiagnosis of breast cancer. Tumour Biol J Int Soc Oncodev Biol Med 36(2):1307–1312

    Article  CAS  Google Scholar 

  • Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K et al (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2(7):616–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimaitiyiming Y, Yang C, Wang Y, Hussain L, Naranmandura H (2019) Selection and characterization of novel DNA aptamer against colorectal carcinoma Caco-2 cells. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1737

    Article  PubMed  Google Scholar 

  • Mcconigley R, Holloway K, Smith J, Halkett G, Keyser J, Aoun S et al (2011) The diagnosis and treatment decisions of cancer patients in rural western australia. Cancer Nurs 34(4):E1

    Article  PubMed  Google Scholar 

  • Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nat Clin Pract Oncol 2(3):480–489

    Google Scholar 

  • Menon A, Handattu S, Shetty J, Girisha BS (2018) Study of cutaneous adverse effects of cancer chemotherapy. Clin Dermatol Rev 2(1):19

    Article  Google Scholar 

  • Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524

    Article  CAS  PubMed  Google Scholar 

  • Mi J, Zhang X, Giangrande PH, McNamara JO, Nimjee SM, Sarraf-Yazdi S, Clary BM (2005) Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun 338(2):956–963

    Article  CAS  PubMed  Google Scholar 

  • Mody K, Baldeo C, Bekaii-Saab T (2018) Antiangiogenic therapy in colorectal cancer. Cancer J 24(4):165–170

    Article  PubMed  Google Scholar 

  • Moja L, Brambilla C, Compagnoni A, Pistotti V (2006) Trastuzumab containing regimens for early breast cancer. The cochrane library. Wiley, New York

    Google Scholar 

  • Mongelard F, Bouvet P (2010) As-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12(1):107–114

    CAS  PubMed  Google Scholar 

  • Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody–aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109(3):808–817

    Article  CAS  PubMed  Google Scholar 

  • Parekh P, Kamble S, Zhao N, Zeng Z, Portier BP, Zu Y (2013) Immunotherapy of CD30-expressing lymphoma using a highly stable ssdna aptamer. Biomaterials 34(35):8909–8917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor F, Soldevilla MM, Villanueva H, Kolonias D, Inoges S, Cerio ALD et al (2013) Cd28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids 2(6):e98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlmutter J, Bell SK, Darien G (2013) Cancer research advocacy: past, present, and future. Can Res 73(15):4611–4615

    Article  CAS  Google Scholar 

  • Plaks V, Koopman CD, Werb Z (2015) Circulating tumor cells. Science 341(6151):1186–1188

    Article  Google Scholar 

  • Poniková S, Tlučková K, Antalík M, Víglaský V, Hianik T (2011) The circular dichroism and differential scanning calorimetry study of the properties of dna aptamer dimers. Biophys Chem 155(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Povsic TJ, Vavalle JP, Alexander JH, Aberle LH, Zelenkofske SL, Becker RC et al (2014) Use of the reg1 anticoagulation system in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the phase ii radar-pci study. Eurointerv J Europcr Collab Work Group Interv Cardiol Eur Soc Cardiol 10(4):431–438

    Google Scholar 

  • Prodeus A, Abdul-Wahid A, Fischer NW, Huang HB, Cydzik M, Gariépy J (2015) Targeting the pd-1/pd-l1 immune evasion axis with dna aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids 4(4):e237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin JJ, Wang XR, Wang P, Ren PF, Shi JX, Zhang HF et al (2014) Mini-array of multiple tumor-associated antigens (taas) in the immunodiagnosis of esophageal cancer. Asian Pac J Cancer Prev APJCP 15(6):2635–2640

    Article  PubMed  Google Scholar 

  • Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, Bollard CM (2017) Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Investig 127(9):3462–3471

    Article  PubMed  PubMed Central  Google Scholar 

  • Roesch A (2014) Tumor heterogeneity and plasticity as elusive drivers for resistance to mapk pathway inhibition in melanoma. Oncogene 34(23):2951–2957

    Article  CAS  PubMed  Google Scholar 

  • Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E (2003) Multivalent rna aptamers that inhibit ctla-4 and enhance tumor immunity. Can Res 63(21):7483–7489

    CAS  Google Scholar 

  • Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release Off J Control Release Soc 153(1):16–22

    Article  CAS  Google Scholar 

  • Shalapour S, Karin M (2015) Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Investig 125(9):3347–3355

    Article  PubMed  PubMed Central  Google Scholar 

  • Soldevilla MM, Villanueva H, Pastor F (2016a) Aptamers: a feasible technology in cancer immunotherapy. J Immunol Res 2016(21):1–12

    Article  CAS  Google Scholar 

  • Soldevilla MM, Villanueva H, Casares N, Lasarte JJ, Bendandi M, Inoges S et al (2016b) Mrp1-cd28 bi-specific oligonucleotide aptamers: target costimulation to drug-resistant melanoma cancer stem cells. Oncotarget 7(17):23182–23196

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D et al (2013) Selection of dna aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85(8):4141–4149

    Article  CAS  PubMed  Google Scholar 

  • Souriau C, Hudson PJ (2005) Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 3(2):305–318

    Article  Google Scholar 

  • Spiel AO, Mayr FB, Ladani N, Wagner PG, Schaub RG, Gilbert JC et al (2009) The aptamer arc1779 is a potent and specific inhibitor of von willebrand factor mediated ex vivo platelet function in acute myocardial infarction. Platelets 20(5):334–340

    Article  CAS  PubMed  Google Scholar 

  • Stefan DC, Seleiro E (2016) International collaboration in cancer research. Cancer research and clinical trials in developing countries. Springer International Publishing, Berlin

    Book  Google Scholar 

  • Sundaram P, Wower J, Byrne ME (2012) A nanoscale drug delivery carrier using nucleic acid aptamers for extended release of therapeutic. Nanomed Nanotechnol Biol Med 8(7):1143–1151

    Article  CAS  Google Scholar 

  • Swaika A, Hammond WA, Joseph RW (2015) Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol Immunol 67(2):4–17

    Article  CAS  PubMed  Google Scholar 

  • Tandan R, Hehir NM, Waheed W, Howard DB (2017) Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve 56(2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Torres-Collado A, Jazirehi A (2018) Overcoming resistance of human non-Hodgkin’s lymphoma to CD19-CAR CTL therapy by celecoxib and histone deacetylase inhibitors. Cancers 10(6):200

    Article  CAS  PubMed Central  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage t4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  • Van Eijk LT, John AS, Schwoebel F, Summo L, Vauléon S, Zöllner S, Riecke K (2014) Effect of the anti-hepcidin Spiegelmer® lexaptepid on inflammation-induced decrease in serum iron in humans. Blood 124(17):2643–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vater A, Klussmann S (2015) Turning mirror-image oligonucleotides into drugs: the evolution of spiegelmer®; therapeutics. Drug Discov Today 20(1):147–155

    Article  CAS  PubMed  Google Scholar 

  • Vinores SA (2006) Pegaptanib in the treatment of wet, age-related macular degeneration. Int J Nanomed 1(3):263–268

    CAS  Google Scholar 

  • Vmd CU, Johnstone C, MRCVS (2012) Recent advances in the application of antibodies as therapeutics. Future Med Chem 4(1):73–86

    Article  CAS  Google Scholar 

  • Vu CQ, Rotkrua P, Tantirungrotechai Y, Soontornworajit B (2017) Oligonucleotide hybridization combined with competitive antibody binding for the truncation of a high-affinity aptamer. ACS Comb Sci 19(10):609–617

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Huang S (2017) Drug development against metastatic cancers. Yale J Biol Med 90(1):119–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner LM, Surana R, Wang S (2010). Antibodies and cancer therapy: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein IB, Case K (2008) The history of cancer research: introducing an AACR centennial series. Can Res 68(17):6861–6862

    Article  CAS  Google Scholar 

  • Wilkes LM, White K, Mohan S, Beale B (2006) Accessing metropolitan cancer care services: practical needs of rural families. J Psychosoc Oncol 24(24):85–101

    Article  PubMed  Google Scholar 

  • Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chem Eur J 14(6):1769–1775

    Article  CAS  PubMed  Google Scholar 

  • Xu HM (2014) Th1 cytokine-based immunotherapy for cancer. Hepatobiliary Pancreat Dis Int 13(5):482–494

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Siddiqui IA, Nihal M, Pilla S, Rosenthal K, Mukhtar H et al (2013) Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34(21):5244–5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Wang Y, Ge MH, Fu YJ, Hao R, Islam K, Naranmandura H (2019) Rapid identification of specific DNA aptamers precisely targeting CD33 positive leukemia cells through a paired cell-based approach. Biomater Sci 7(3):938–950

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Parekh P, Li Z, Shi ZZ, Tung CH, Zu Y (2014a) Specific and sensitive tumor imaging using biostable oligonucleotide aptamer probes. Theranostics 4(9):945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Tung CH, Zu Y (2014b) A cancer cell-activatable aptamer-reporter system for one-step assay of circulating tumor cells. Mol Ther Nucleic Acids 3(8):e184–e184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hamasaki A, Toshiro E, Aoyama Y, Ito Y (2000) Automated in vitro selection to obtain functional oligonucleotides. Nucleic Acids Symp 44(44):219

    Article  Google Scholar 

  • Zhang Y, Leonard M, Yi S, Yang Y, Dan S, Guo P et al (2016) Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional prna nanoparticles. ACS Nano 11(1):335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Latchoumanin O, Bagdesar M, Hebbard L, Duan W, Liddle C et al (2017) Aptamer-based therapeutic approaches to target cancer stem cells. Theranostics 7(16):3948–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB et al (2012) Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem Asian J 7(7):1630–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C et al (2013) Self-assembled, aptamer-tethered dna nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110(20):7998–8003

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu HH, Qin YZ, Huang XJ (2014) Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med 370(19):1864–1866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All data generated or analyzed during this study are included in this article.

Funding

The authors wish to acknowledge following grants for the support of current work: National Natural Science Foundation of China (no. 81673521; no. 81872942); National Science and Technology Major Project (no. 2018ZX10302-206); Key Project of Traditional Chinese Medicine Science and Technology of Zhejiang Province (2015ZZ006).

Author information

Authors and Affiliations

Authors

Contributions

HN conceived and designed the study. YM is the major contributor in collecting, analyzing literature and writing of the manuscript. DFH and CY aided in the process of collecting and analyzing literature. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hua Naranmandura.

Ethics declarations

Conflict of interest

The author(s) declared that they have no potential conflicts of interest regarding research, authorship, and/or publication of this article.

Ethical approval

This study does not contain any animal or human participants.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maimaitiyiming, Y., Hong, D.F., Yang, C. et al. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol 145, 797–810 (2019). https://doi.org/10.1007/s00432-019-02882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-019-02882-7

Keywords

  • Aptamer
  • Antibody
  • Cancer cell heterogeneity and plasticity
  • Targeted therapy
  • Immunotherapy
  • SELEX