Journal of Cancer Research and Clinical Oncology

, Volume 144, Issue 7, pp 1227–1237 | Cite as

Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I–IV astrocytic brain tumors

  • Franziska Lange
  • Daniel Kaemmerer
  • Julianne Behnke-Mursch
  • Wolfgang Brück
  • Stefan Schulz
  • Amelie Lupp
Original Article – Cancer Research



Glioblastomas represent the most common primary malignant tumor of the nervous system and the most frequent type of astrocytic tumors. Despite improved therapeutic options, prognosis has remained exceptionally poor over the last two decades. Therefore, new treatment approaches are urgently needed. An overexpression of somatostatin (SST) as well as chemokine CXCR4 and endothelin A (ETA) receptors has been shown for many types of cancer. Respective expression data for astrocytic brain tumors, however, are scarce and contradictory.


SST subtype, CXCR4 and ETA expression was comparatively evaluated in a total of 57 grade I–IV astrocytic tumor samples by immunohistochemistry using well-characterized monoclonal antibodies.


Overall, receptor expression on the tumor cells was only very low. SST5 was the most prominently expressed receptor, followed by SST3, ETA, SST2 and CXCR4. In contrast, tumor capillaries displayed strong SST2, SST3, SST5, CXCR4 and ETA expression. Presence of SST5, CXCR4 and ETA on tumor cells and of SST3, CXCR4 and ETA on microvessels gradually increased from grade II to grade IV tumors. Ki-67 values correlated significantly with CXCR4 expression on tumor cells and with vascular SST3, CXCR4 or ETA positivity. SST5 or CXCR4 positivity of tumor cells and vascular SST3 or CXCR4 expression negatively correlated with patient outcome.


Though having some prognostic value, SST, CXCR4 or ETA expression on astrocytic tumor cells is clearly of no therapeutic relevance. Indirect targeting of these highly vascularized tumors via SST3, SST5, CXCR4 or ETA on the microvessels, in contrast, may represent a promising additional therapeutic strategy.


Somatostatin receptors CXCR4 Endothelin receptor A Astrocytoma Glioma Glioblastoma 



C–X–C motif chemokine receptor 4


Endothelin receptor A


Somatostatin receptor


Author contributions

Conceived and designed the experiments: Daniel Kaemmerer, Amelie Lupp. Provided the tumor samples: Julianne Behnke-Mursch, Wolfgang Brück. Provided the antibodies: Stefan Schulz. Acquired the clinical data: Daniel Kaemmerer. Performed the experiments: Franziska Lange, Amelie Lupp. Analyzed the data: Franziska Lange, Amelie Lupp. Interpreted the data: Amelie Lupp. Wrote the paper: Amelie Lupp. Revised critically the manuscript: Franziska Lange, Daniel Kaemmerer, Julianne Behnke-Mursch, Wolfgang Brück, Stefan Schulz. Each of the authors has approved the manuscript and acknowledges that he or she participated sufficiently in the work to take public responsibility for its content.


The Theranostic Research Center, Zentralklinik Bad Berka, 99437 Bad Berka, Germany, provided funding for this research.

Compliance with ethical standards

Conflict of interest

Daniel Kaemmerer received funding and support for travelling to meetings by the companies Ipsen and Pfizer. All other authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Permission was gained from the local ethics committee (Ethikkommission der Landesärztekammer Thüringen) for this retrospective analysis. For this type of study formal consent is not required. All data were recorded and analyzed anonymously.

Supplementary material

432_2018_2645_MOESM1_ESM.tif (17.8 mb)
Supplemental Figure S1: Typical examples of positive control immunostainings for somatostatin receptors (SST) and CXCR4. SST2, SST3 and SST5: pancreatic islets; CXCR4: germinal center of a lymph node; ETA: placenta. Immunohistochemistry (red-brown color), counterstaining with hematoxylin; scale bar: 20 µm (TIF 18252 KB)
432_2018_2645_MOESM2_ESM.tif (930 kb)
Supplemental Figure S2: Overall survival of patients with WHO grade I-IV astrocytic brain tumors (log-rank-test: p = 0.003) (TIF 929 KB)
432_2018_2645_MOESM3_ESM.docx (23 kb)
Supplementary material 3 (DOCX 23 KB)
432_2018_2645_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 22 KB)
432_2018_2645_MOESM5_ESM.docx (23 kb)
Supplementary material 5 (DOCX 22 KB)


  1. Ambroise MM, Khosla C, Ghosh M, Mallikarjuna VS, Annapurneswari S (2011) Practical value of MIB-1 index in predicting behavior of astrocytomas. Indian J Pathol Microbiol 54:520–525CrossRefPubMedGoogle Scholar
  2. Bianco AM, Uno M, Oba-Shinjo SM, Clara CA, de Almeida Galatro TF, Rosemberg S, Teixeira MJ, Nagahashi Marie SK (2015) CXCR7 and CXCR4 expressions in infiltrative astrocytomas and their interactions with HIF1a expression and IDH1 mutation. Pathol Oncol Res 21:229–240CrossRefPubMedGoogle Scholar
  3. Buck AK, Stolzenburg A, Hänscheid H, Schirbel A, Lückerath K, Schottelius M, Wester HJ, Lapa C (2017) Chemokine receptor—directed imaging and therapy. Methods 130:63–71CrossRefPubMedGoogle Scholar
  4. Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Langley A, Martinez S, Blumberg J, Ruszniewski P, for the CLARINETInvestigators (2014) Lanreotide in metastatic enteropancreatic neuroendocrine tumors. New Engl J Med 371:224–233CrossRefPubMedGoogle Scholar
  5. Cervera P, Videau C, Viollet C, Petrucci C, Lacombe J, Winsky-Sommerer R, Csaba Z, Helboe L, Daumas-Duport C, Reubi JC, Epelbaum J (2002) Comparison of somatostatin receptor expression in human gliomas and medulloblastomas. J Neuroendocrinol 14:458–471CrossRefPubMedGoogle Scholar
  6. Chen WJ, He DS, Tang RX, Ren FH, Chen G (2015) Ki-67 is a valuable prognostic factor in gliomas: evidence from a systematic review and meta-analysis. Asian Pac J Cancer Prev 16:411–420CrossRefPubMedGoogle Scholar
  7. Chinezu L, Vasiljevic A, Jouanneau E, François P, Borda A, Trouillas J, Raverot G (2014) Expression of somatostatin receptors, SSTR2A and SSTR5, in 108 endocrine pituitary tumors using immunohistochemical detection with new specific monoclonal antibodies. Hum Pathol 45:71–77CrossRefPubMedGoogle Scholar
  8. Cloughesy TF, Cavenee WK, Mischel PS (2014) Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol Mech Dis 9:1–25CrossRefGoogle Scholar
  9. Cohen A, Holmen S, Colman H (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 13:345CrossRefPubMedPubMedCentralGoogle Scholar
  10. Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EGE, Walenkamp AME (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49:219–230CrossRefPubMedGoogle Scholar
  11. Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, Patel YC (1998) Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 76:620–627CrossRefPubMedGoogle Scholar
  12. Egidy G, Eberl LP, Valdenaire O, Irmler M, Majdi R, Diserens AC, Fontana A, Janzer RC, Pinet F, Juillert-Jeanneret (2000) The endothelin system in human glioblastoma. Lab Invest 80:1681–1689CrossRefPubMedGoogle Scholar
  13. Feindt J, Becker I, Blömer U, Hugo HH, Mehdorn HM, Krisch B, Mentlein R (1995) Expression of somatostatin receptor subtypes in cultured astrocytes and gliomas. J Neurochem 65:1997–2005CrossRefPubMedGoogle Scholar
  14. Fischer T, Doll C, Jacobs S, Kolodziej A, Stumm R, Schulz S (2008a) Reassessment of SST2 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-1. J Clin Endocrinol Metab 93:4519–4524CrossRefPubMedGoogle Scholar
  15. Fischer T, Nagel F, Jacobs S, Stumm R, Schulz S (2008b) Reassessment of CXCR4 chemokine receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-2. PLoS One 3:e4069CrossRefPubMedPubMedCentralGoogle Scholar
  16. Furusato B, Rhim JS (2010) CXCR4 and cancer. Pathol Internat 7:497–505CrossRefGoogle Scholar
  17. Gravina GL, Mancini A, Colapietro A, Vitale F, Vetuschi A, Pompili S, Rossi G, Marampon F, Richardson PJ, Patient L, Patient L, Burbidge S, Festuccia C (2017) The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models. Tumour Biol. PubMedCrossRefGoogle Scholar
  18. Hattermann K, Held-Feindt J, Lucius R, Müerköster SS, Penfold MET, Schall T, Mentlein R (2010) The chemokine receptor CXCR7 is highly expressed in human glioma cells and mediates antiapoptotic effects. Cancer Res 70:3299–3308CrossRefPubMedGoogle Scholar
  19. Heute D, Kostron H, von Guggenberg E, Ingorokva S, Gabriel M, Dobrozemsky G, Stockhammer G, Virgolini I (2010) Response of recurrent high-grade glioma to treatment with 90Y-DOTATOC. J Nucl Med 51:397–400CrossRefPubMedGoogle Scholar
  20. Irani S, Salajegheh A, Smith RA, Lam AKY (2014) A review of the profile of endothelin axis in cancer and its management. Crit Rev Oncol Hematol 89:314–321CrossRefPubMedGoogle Scholar
  21. Johannessen AL, Thorp SH (2006) The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Onc Res 12:143–147CrossRefGoogle Scholar
  22. Kaemmerer D, Träger T, Hoffmeister M, Sipos B, Hommann M, Sänger J, Schulz S, Lupp A (2015a) Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget 6:27566–27579PubMedPubMedCentralGoogle Scholar
  23. Kaemmerer D, Reimann C, Specht E, Wirtz RM, Sayeg M, Baum RP, Schulz S, Lupp A (2015b) Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasm. Oncotarget 6:3346–3358PubMedGoogle Scholar
  24. Kim SJ, Lee HJ, Kim MS, Choi HJ, He J, Wu Q, Aldape K, Weinberg JS, Yung WKA, Conrad CA, Langley RR, Lehembre F, Regenass U, Fidler IJ (2015) Macitentan, a dual endothelin receptor antagonist, in combination with temozolomide leads to glioblastoma regression and long-term survival in mice. Clin Cancer Res 21:4630–4641CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kiviniemi A, Gardberg M, Frantzén J, Pesola M, Vuorinen V, Parkkola R, Tolvanen T, Suilamo S, Johansson J, Luoto P, Kemppainen J, Roivainen A, Minn H (2015) Somatostatin receptor subtype 2 in high-grade gliomas: PET/CT with 68Ga-DOTA-peptides, correlation to prognostic markers, and implications for targeted radiotherapy. EJNMMI Res 5:25CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kiviniemi A, Gardberg M, Kivinen K, Posti JP, Vuorinen V, Sipilä J, Rahi M, Sankinen M, Minn H (2017) Somatostatin receptor 2A in gliomas: association with oligodendrogliomas and favourable outcome. Oncotarget 8:49123–49132CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lambertini C, Barzaghi-Rinaudo P, D’Amato L, Schulz S, Nuciforo P, Schmid HA (2013) Evaluation of somatostatin receptor subtype expression in human neuroendocrine tumors using two sets of new monoclonal antibodies. Regul Pept 187:35–41CrossRefPubMedGoogle Scholar
  28. Lamszus K, Meyerhof W, Westphal M (1997) Somatostatin and somatostatin receptors in the diagnosis and treatment of gliomas. J Neuro-Oncol 35:353–364CrossRefGoogle Scholar
  29. Lapa C, Linsenmann T, Lückerath K, Samnick S, Herrmann K, Stoffer C, Ernestus RI, Buck AK, Löhr M, Monoranu CM (2015) Tumor-associated macrophages in glioblastoma multiforme—a suitable target for somatostatin receptor-based imaging and therapy? PloS One 10:e0122269CrossRefPubMedPubMedCentralGoogle Scholar
  30. Louis DN, Perry A, ·Reifenberger G,·von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMedGoogle Scholar
  31. Lupp A, Danz M, Müller D (2001) Morphology and cytochrome P450 isoforms expression in precision-cut rat liver slices. Toxicology 161:53–66CrossRefPubMedGoogle Scholar
  32. Lupp A, Hunder A, Petrich A, Nagel F, Doll C, Schulz S (2011) Reassessment of SST5 somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinol 94:255–264CrossRefGoogle Scholar
  33. Lupp A, Nagel F, Doll C, Röcken C, Evert M, Mawrin C, Saeger W, Schulz S (2012) Reassessment of sst3 somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinol 96:301–310CrossRefGoogle Scholar
  34. Lupp A, Nagel F, Schulz S (2013) Reevaluation of sst1 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-7. Regul Pept 183:1–6CrossRefPubMedGoogle Scholar
  35. Lupp A, Mann A, Heeb A, Kaemmerer D, Sänger J, Evert M, Evert K, Mawrin C, Schulz S (2015) Reassessment of endothelin receptor A expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibodyUMB-8. Peptides 66:19–25CrossRefPubMedGoogle Scholar
  36. Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM, Held-Feindt J (2007) Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol. CrossRefPubMedGoogle Scholar
  37. Mawrin C, Schulz S, Pauli SU, Treuheit T, Diete S, Dietzmann K, Firsching R, Schulz S, Höllt V (2004) Differential expression of sst1, sst2A, and sst3 somatostatin receptor proteins in low-grade and high-grade astrocytomas. J Neuropathol Exp Neurol 63:13–19CrossRefPubMedGoogle Scholar
  38. Mercurio L, Ajmone-Cat MA, Cecchetti S, Ricci A, Bozzuto G, Molinari A, Manni I, Pollo B, Scala S, Carpinelli G, Minghetti L (2016) Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J Exp Clin Cancer Res 35:55CrossRefPubMedPubMedCentralGoogle Scholar
  39. Naidoo V, Naidoo S, Mahabeer R, Raidoo DM (2005) Localization of the endothelin system in human diffuse astrocytomas. Cancer 104:1049–1057CrossRefPubMedGoogle Scholar
  40. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 17:iv1–iv62CrossRefPubMedPubMedCentralGoogle Scholar
  41. Razmkhah M, Arabpour F, Taghipour M, Mehrafshan A, Chenari N, Ghaderi A (2014) Expression of chemokines and chemokine receptors in brain tumor tissue derived cells. Asian Pac J Cancer Prev 15:7201–7205CrossRefPubMedGoogle Scholar
  42. Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8:138–140PubMedGoogle Scholar
  43. Rempel S, Dudas S, Ge S, Gutierrez JA (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111PubMedGoogle Scholar
  44. Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M, Harder J, Arnold C, Gress T, Arnold R; PROMID Study Group (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27:4656–4663CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rosano L, Spinella F, Bagnato A (2013) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev 13:637–651CrossRefGoogle Scholar
  46. Rubin JB, Kung AL, Klein RS, Chan JA, Sun Y, Schmidt K, Kieran MW, Luster AD, Segal R (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. PNAS 100:13513–13518CrossRefPubMedPubMedCentralGoogle Scholar
  47. Said N, Theodorescu D (2012) Permissive role of endothelin receptors in tumor metastasis. Life Sci 91:522–527CrossRefPubMedGoogle Scholar
  48. Savelli G, Muni A (2015) Somatostatin receptors in anaplastic oligodendroglioma relapse evidenced by 68Ga DOTANOC PET/CT. Clin Nucl Med 40:e363-e365CrossRefGoogle Scholar
  49. Smit Duijzentkunst DA, Kwekkeboom DJ, Bodei L (2017) Somatostatin receptor 2-targeting compounds. J Nucl Med 58:54S-60SCrossRefPubMedGoogle Scholar
  50. Stollberg S, Kaemmerer D, Neubauer E, Schulz S, Simonitsch-Klupp I, Kiesewetter B, Raderer B, Lupp A (2016) Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin. J Cancer Res Clin Oncol 142:2239–2247CrossRefPubMedGoogle Scholar
  51. Thotakura M, Tirumalasetti N, Krishna R (2014) Role of Ki-67 labeling index as an adjunct to the histopathological diagnosis and grading of astrocytomas. J Can Res Ther 10:641–645Google Scholar
  52. Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 ligands. The next big hit? J Nucl Med 58:77S-82SCrossRefPubMedGoogle Scholar
  53. Wang R, Dashwood RH (2011) Endothelins and their receptors in cancer: identification of therapeutic targets. Pharmacol Res 63:519–524CrossRefPubMedPubMedCentralGoogle Scholar
  54. Woerner BM, Warrington NM, Kung AL, Perry A, Rubin JB (2005) Widespread CXCR4 activation in astrocytomas revealed vy phosphor-CXCR4-specific antibodies. Cancer Res 65:11392–11399CrossRefPubMedGoogle Scholar
  55. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friemann H, Friedmann A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B (2015) CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget 6:5022–5040PubMedGoogle Scholar
  57. Zhou Y, Larsen PH, Hao C, Yong VW (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277:4981–4987CrossRefGoogle Scholar
  58. Zhou W, Jiang Z, Song X, Liu Y, Wen P, Guo Y, Xu F, Kong L, Zhang P, Han A, Yu J (2008) Promoter hypermethylation-mediated down-regulation of CXCL12 in human astrocytoma. J Neurosci Res 86:3002–3010CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich Schiller University JenaJenaGermany
  2. 2.Department of General and Visceral SurgeryZentralklinik Bad BerkaBad BerkaGermany
  3. 3.Department of NeurosurgeryZentralklinik Bad BerkaBad BerkaGermany
  4. 4.Institute of PathologyUniversity Medical Centre Göttingen, University of GöttingenGöttingenGermany

Personalised recommendations