Journal of Cancer Research and Clinical Oncology

, Volume 143, Issue 9, pp 1789–1809 | Cite as

ROS-modulated therapeutic approaches in cancer treatment

  • Muhammad Hassan Raza
  • Sami Siraj
  • Abida Arshad
  • Usman Waheed
  • Fahad Aldakheel
  • Shatha Alduraywish
  • Muhammad Arshad
Review – Clinical Oncology

Abstract

Purpose

Reactive oxygen species (ROS) are produced in cancer cells as a result of increased metabolic rate, dysfunction of mitochondria, elevated cell signaling, expression of oncogenes and increased peroxisome activities. Certain level of ROS is required by cancer cells, above or below which lead to cytotoxicity in cancer cells. This biochemical aspect can be exploited to develop novel therapeutic agents to preferentially and selectively target cancer cells.

Methods

We searched various electronic databases including PubMed, Web of Science, and Google Scholar for peer-reviewed english-language articles. Selected articles ranging from research papers, clinical studies, and review articles on the ROS production in living systems, its role in cancer development and cancer treatment, and the role of microbiota in ROS-dependent cancer therapy were analyzed.

Results

This review highlights oxidative stress in tumors, underlying mechanisms of different relationships of ROS and cancer cells, different ROS-mediated therapeutic strategies and the emerging role of microbiota in cancer therapy.

Conclusion

Cancer cells exhibit increased ROS stress and disturbed redox homeostasis which lead to ROS adaptations. ROS-dependent anticancer therapies including ROS scavenging anticancer therapy and ROS boosting anticancer therapy have shown promising results in vitro as well as in vivo. In addition, response to cancer therapy is modulated by the human microbiota which plays a critical role in systemic body functions.

Keywords

Reactive oxygen species Pro-oxidants Antioxidants Cancer therapy Microbiota 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

Not applicable.

References

  1. Agarwala SS, Sabbagh MH (2001) Histamine dihydrochloride: inhibiting oxidants and synergising IL-2-mediated immune activation in the tumour microenvironment. Expert Opin Biol Ther 1:869–879PubMedCrossRefGoogle Scholar
  2. Al-Abdullah ES, Al-Tuwaijri HM, Hassan HM, Al-Alshaikh MA, Habib EE, El-Emam AA (2015) Synthesis, antimicrobial and hypoglycemic activities of novel N-(1-adamantyl) carbothioamide derivatives. Molecules 20:8125–8143PubMedCrossRefGoogle Scholar
  3. Albanes D et al (2014) Plasma tocopherols and risk of prostate cancer in the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Prev Res 7(9):886–895CrossRefGoogle Scholar
  4. Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, Goldwasser F, Batteux F (2006) Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98(4):236–244PubMedCrossRefGoogle Scholar
  5. Al-Mayah A et al (2015) The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res Fundam Mol Mech Mutagen 772:38–45CrossRefGoogle Scholar
  6. Altenhöfer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23:406–427PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aunoble B, Sanches R, Didier E, Bignon Y (2000) Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer (review). Int J Oncol 16:567–576PubMedGoogle Scholar
  8. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476PubMedGoogle Scholar
  9. Bae YS, Sung J-Y, Kim O-S, Kim YJ, Hur KC, Kazlauskas A, Rhee SG (2000) Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 275:10527–10531PubMedCrossRefGoogle Scholar
  10. Bauer G (2012) Tumor cell-protective catalase as a novel target for rational therapeutic approaches based on specific intercellular ROS signaling. Anticancer Res 32:2599–2624PubMedGoogle Scholar
  11. Belfi CA, Chatterjee S, Gosky DM, Berger SJ, Berger NA (1999) Increased sensitivity of human colon cancer Cells to DNA cross-linking agents after GRP78 up-regulation. Biochem Biophys Res Comm 257(2):361–368PubMedCrossRefGoogle Scholar
  12. Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420–425PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang C-R, Girard L, Minna JD, Bornmann WG, Gao J, Boothman DA (2007) An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci 104(28):11832–11837PubMedPubMedCentralCrossRefGoogle Scholar
  14. Biaglow JE, Miller RA (2005) The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther 4:13–20CrossRefGoogle Scholar
  15. Bianchini F, Vainio H (2003) Wine and resveratrol: mechanisms of cancer prevention? Eur J Cancer Prev 12:417–425PubMedCrossRefGoogle Scholar
  16. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192PubMedCrossRefGoogle Scholar
  17. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857PubMedCrossRefGoogle Scholar
  18. Boyacioglu M et al (2014) The protective effects of vitamin C on the DNA damage, antioxidant defenses and aorta histopathology in chronic hyperhomocysteinemia induced rats. Exp Toxicol Pathol 66:407–413PubMedCrossRefGoogle Scholar
  19. Boyer-Guittaut M et al (2014) The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 10:986–1003PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brenner C, Pervaiz S, Clément M, Le Bras M (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219PubMedGoogle Scholar
  21. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta (BBA) Rev Cancer 1776:86–107CrossRefGoogle Scholar
  22. Cai J et al (2008) Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis. Neoplasia 10(1):41–51PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cardenas E, Ghosh R (2013) Vitamin E: a dark horse at the crossroad of cancer management. Biochem Pharmacol 86:845–852PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480PubMedGoogle Scholar
  25. Chan DW, Liu VW, Tsao GS, Yao K-M, Furukawa T, Chan KK, Ngan HY (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29:1742–1750PubMedCrossRefGoogle Scholar
  26. Chen J (2014) Reactive oxygen species and drug resistance in cancer chemotherapy. Austin J Clin Pathol 1:1017Google Scholar
  27. Chen Q, Olashaw N, Wu J (1995) Participation of reactive oxygen species in the lysophosphatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J Biol Chem 270:28499–28502PubMedCrossRefGoogle Scholar
  28. Chen J, Adikari M, Pallai R, Parekh HK, Simpkins H (2008) Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 61:979–987PubMedCrossRefGoogle Scholar
  29. Chen Z, Pittman EF, Romaguera J, Fayad L, Wang M, Neelapu SS, McLaughlin P, Kwak L, McCarty N (2013) Nuclear translocation of B-cell-specific transcription factor, BACH2, modulates ROS mediated cytotoxic responses in mantle cell lymphoma. PLoS One 8(8):e69126PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chiarugi P (2005) Review PTPs versus PTKs: the redox side of the coin. Free Radic Res 39:353–364PubMedCrossRefGoogle Scholar
  31. Chou W-C, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 101:4578–4583PubMedPubMedCentralCrossRefGoogle Scholar
  32. Clerkin J, Naughton R, Quiney C, Cotter T (2008) Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett 266:30–36PubMedCrossRefGoogle Scholar
  33. Combs F Jr (2015) Biomarkers of selenium status. Nutrients 7:2209–2236PubMedPubMedCentralCrossRefGoogle Scholar
  34. Conklin KA (2000) Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 37:1–18PubMedCrossRefGoogle Scholar
  35. Cornelis MC et al (2014) Genome-wide association study of selenium concentrations. Hum Mol Genet 24(5):1469–1477PubMedPubMedCentralCrossRefGoogle Scholar
  36. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262. doi:10.1126/science.1224203 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277PubMedGoogle Scholar
  39. D’Andrea GM (2005) Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J Clin 55:319–321PubMedCrossRefGoogle Scholar
  40. Dansen TB, Wirtz KW (2001) The peroxisome in oxidative stress. IUBMB Life 51:223–230PubMedCrossRefGoogle Scholar
  41. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378PubMedCrossRefGoogle Scholar
  42. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRefGoogle Scholar
  43. Denmeade SR, Mhaka AM, Rosen DM, Brennen WN, Dalrymple S, Dach I, Olesen C, Gurel B, DeMarzo AM, Wilding G, Carducci MA, Dionne CA, Moller JV, Nissen P, Christensen SB, Isaacs JT (2012) Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci Transl Med 4(140):140ra86PubMedPubMedCentralCrossRefGoogle Scholar
  44. Derick H, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353:411–416CrossRefGoogle Scholar
  45. Díaz-Laviada I, Rodríguez-Henche N (2014) The potential antitumor effects of capsaicin. In: Capsaicin as a Therapeutic Molecule. Springer Basel, pp 181–208Google Scholar
  46. Dufour E, Gay F, Aguera K, Scoazec J-Y, Horand F, Lorenzi PL, Godfrin Y (2012) Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas 41:940–948PubMedCrossRefGoogle Scholar
  47. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G (2015) The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 45:17–31PubMedCrossRefGoogle Scholar
  48. Engel RH, Evens AM (2005) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci J Virtual Libr 11:300–312CrossRefGoogle Scholar
  49. Ermolaeva MA et al (2013) DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501:416–420PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ferraro D et al (2006) Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689–3698PubMedCrossRefGoogle Scholar
  51. Fidias P, Novello S (2010) Strategies for prolonged therapy in patients with advanced non-small-cell lung cancer. J Clin Oncol 28:5116–5123PubMedCrossRefGoogle Scholar
  52. Fruehauf JP, Meyskens FL (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794PubMedCrossRefGoogle Scholar
  53. Galluzzi L et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ghavami S et al (2008) Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med 12:1005–1022PubMedCrossRefGoogle Scholar
  55. Gianni D et al (2010) A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5:981–993PubMedPubMedCentralCrossRefGoogle Scholar
  56. Giles GI (2006) The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des 12:4427–4443PubMedCrossRefGoogle Scholar
  57. Gills JJ, LoPiccolo J, Tsurutani J, Shoemaker RH, Best CJM, Abu-Asab MS, Borojerdi J, Warfel NA, Gardner ER, Danish M, Hollander MC, Kawabata S, Tsokos M, Figg WD, Steeg PS, Dennis PA (2007) Nelfinavir, a lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res 13(17):5183–5194PubMedCrossRefGoogle Scholar
  58. Glasauer A, Chandel NS (2014) Targeting antioxidants for cancer therapy. Biochem Pharmacol 92:90–101PubMedCrossRefGoogle Scholar
  59. Glasauer A, Sena LA, Diebold LP, Mazar AP, Chandel NS (2014) Targeting SOD1 reduces experimental non-small-cell lung cancer. J Clin Investig 124:117–128PubMedCrossRefGoogle Scholar
  60. Glorieux C, Calderon PB (2017) Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem. doi:10.1515/hsz-2017-0131 PubMedGoogle Scholar
  61. Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82:1384–1390PubMedCrossRefGoogle Scholar
  62. Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G (2015) Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 3:103–109PubMedPubMedCentralCrossRefGoogle Scholar
  63. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148PubMedCrossRefGoogle Scholar
  64. Gui Q, Lu H, Zhang C, Xu Z, Yang Y (2015) Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 14:5642–5651PubMedCrossRefGoogle Scholar
  65. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11PubMedCrossRefGoogle Scholar
  66. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  67. Hellstrand K (2002) Histamine in cancer immunotherapy: a preclinical background. In: Seminars in oncology. vol 29, No. 3. WB Saunders, pp 35–40Google Scholar
  68. Hierro C, Monte MJ, Lozano E, Gonzalez-Sanchez E, Marin JJ, Macias RI (2014) Liver metabolic/oxidative stress induces hepatic and extrahepatic changes in the expression of the vitamin C transporters SVCT1 and SVCT2. Eur J Nutr 53:401–412PubMedCrossRefGoogle Scholar
  69. Ho WJ et al (2015) Antioxidant micronutrients and the risk of renal cell carcinoma in the Women’s Health Initiative cohort. Cancer 121:580–588PubMedCrossRefGoogle Scholar
  70. Holmgren A (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3:239–243PubMedCrossRefGoogle Scholar
  71. Hong MY, Turner ND, Carroll RJ, Chapkin RS, Lupton JR (2005) Differential response to DNA damage may explain different cancer susceptibility between small and large intestine. Expe Biol Med 230:464–471CrossRefGoogle Scholar
  72. Hsieh YJ, Wu CC, Chang CJ, Yu JS (2003) Subcellular localization of Photofrin® determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol 194:363–375PubMedCrossRefGoogle Scholar
  73. Hu B et al (2016) The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354:765–768PubMedCrossRefGoogle Scholar
  74. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395PubMedCrossRefGoogle Scholar
  75. Hurst R et al (2012) Selenium and prostate cancer: systematic review and meta-analysis. Am J Clin Nutr 96:111–122PubMedCrossRefGoogle Scholar
  76. Hyoudou K, Nishikawa M, Kobayashi Y, Umeyama Y, Yamashita F, Hashida M (2006) PEGylated catalase prevents metastatic tumor growth aggravated by tumor removal. Free Radic Biol Med 41:1449–1458PubMedCrossRefGoogle Scholar
  77. Hyoudou K, Nishikawa M, Kobayashi Y, Ikemura M, Yamashita F, Hashida M (2008) SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis 25:531–536PubMedCrossRefGoogle Scholar
  78. Iida N et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–970PubMedCrossRefGoogle Scholar
  79. Ishikawa K et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664PubMedCrossRefGoogle Scholar
  80. Ivanova D, Bakalova R, Lazarova D, Gadjeva V, Zhelev Z (2012) The impact of reactive oxygen species on anticancer therapeutic strategies. Adv Clin Exp Med Off Organ Wroclaw Med Univ 22:899–908Google Scholar
  81. Jablonska E, Vinceti M (2015) Selenium and human health: witnessing a Copernican revolution? J Environ Sci Health Part C 33:328–368CrossRefGoogle Scholar
  82. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72:76–90PubMedPubMedCentralCrossRefGoogle Scholar
  84. Jing X, Ueki N, Cheng J, Imanishi H, Hada T (2002) Induction of apoptosis in hepatocellular carcinoma cell lines by emodin. Jpn J Cancer Res 93:874–882PubMedCrossRefGoogle Scholar
  85. Jing Y et al (2006) Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor κB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent. Free Radic Biol Med 40:2183–2197PubMedCrossRefGoogle Scholar
  86. Jones RM et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jones RM et al (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12:1217–1225PubMedPubMedCentralCrossRefGoogle Scholar
  88. Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE, Tonks NK, Mazar AP, Donate F (2008) Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci 105(20):7147–7152PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1–Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kim Y-S, Morgan MJ, Choksi S, Z-g Liu (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26:675–687PubMedCrossRefGoogle Scholar
  91. Kim Y, Wei J, Citronberg J, Hartman T, Fedirko V, Goodman M (2015) Relation of vitamin E and selenium exposure to prostate cancer risk by smoking status: a review and meta-analysis. Anticancer Res 35:4983–4996PubMedGoogle Scholar
  92. Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang C-Y, Zhang M, Du Z, Barsoum J, Bertin J (2008) Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Can Ther 7(8):2319–2327CrossRefGoogle Scholar
  93. Kizaki M, Xian M, Sagawa M, Ikeda Y (2006) Induction of apoptosis via the modulation of reactive oxygen species (ROS) production in the treatment of myeloid leukemia. Curr Pharm Biotechnol 7:323–329PubMedCrossRefGoogle Scholar
  94. Kong Q, Lillehei K (1998) Antioxidant inhibitors for cancer therapy. Med Hypotheses 51:405–409PubMedCrossRefGoogle Scholar
  95. Kontek R, Kontek B, Grzegorczyk K (2013) Vitamin C modulates DNA damage induced by hydrogen peroxide in human colorectal adenocarcinoma cell lines (HT29) estimated by comet assay in vitro. Arch Med Sci AMS 9:1006–1012PubMedCrossRefGoogle Scholar
  96. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72PubMedCrossRefGoogle Scholar
  97. Kubo T, Shimose S, Matsuo T, Tanaka K, Yasunaga Y, Sakai A, Ochi M (2006) Inhibitory effects of a new bisphosphonate, minodronate, on proliferation and invasion of a variety of malignant bone tumor cells. J Orthop Res 24:1138–1144PubMedCrossRefGoogle Scholar
  98. Lai W-L, Wong N-S (2005) ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radic Biol Med 38(12):1585–1593PubMedCrossRefGoogle Scholar
  99. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B Cells. Cell Metab 15(1):110–121PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lee K, Esselman WJ (2002) Inhibition of PTPs by H2O2 regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33:1121–1132PubMedCrossRefGoogle Scholar
  101. Lee W-K, Thévenod F (2006) A role for mitochondrial aquaporins in cellular life-and-death decisions? Am J Physiol Cell Physiol 291:C195–C202PubMedCrossRefGoogle Scholar
  102. Lee Y-J et al (2012) Reactive oxygen species and PI3K/Akt signaling play key roles in the induction of Nrf2-driven heme oxygenase-1 expression in sulforaphane-treated human mesothelioma MSTO-211H cells. Food Chem Toxicol 50:116–123PubMedCrossRefGoogle Scholar
  103. Li X, Yin D, Yin J, Chen Q, Wang R (2014) Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food Chem Toxicol 72:169–177PubMedCrossRefGoogle Scholar
  104. Li Y et al (2015) Effects of vitamin E from supplements and diet on colonic α-and γ-tocopherol concentrations in persons at increased colon cancer risk. Nutr Cancer 67:73–81PubMedCrossRefGoogle Scholar
  105. Lim SD et al (2005) Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62:200–207PubMedCrossRefGoogle Scholar
  106. Liu Y, Min W (2002) Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 90:1259–1266PubMedCrossRefGoogle Scholar
  107. Liu J, Du J, Zhang Y, Sun W, Smith BJ, Oberley LW, Cullen JJ (2006) Suppression of the malignant phenotype in pancreatic cancer by overexpression of phospholipid hydroperoxide glutathione peroxidase. Hum Gene Ther 17:105–116PubMedCrossRefGoogle Scholar
  108. Liu Y-Q et al (2013) Synthesis and mechanistic studies of novel spin-labeled combretastatin derivatives as potential antineoplastic agents. Bioorg Med Chem 21:1248–1256PubMedCrossRefGoogle Scholar
  109. Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270:11727–11730PubMedCrossRefGoogle Scholar
  110. Lo M, Ling V, Low C, Wang YZ, Gout PW (2010) Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Current Oncol 17:9–16Google Scholar
  111. Lum GB, Shelp BJ, DeEll JR, Bozzo GG (2016) Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. Plant Sci 245:143–152PubMedCrossRefGoogle Scholar
  112. Madesh M, Hajnóczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1016PubMedPubMedCentralCrossRefGoogle Scholar
  113. Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O, Kakizuka A (2004) Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ 11:737–746PubMedCrossRefGoogle Scholar
  114. Magda D, Miller RA (2006) Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 16(6):466–476PubMedCrossRefGoogle Scholar
  115. Maier I, Berry DM, Schiestl RH (2014) Intestinal microbiota reduces genotoxic endpoints induced by high-energy protons. Radiat Res 181:45–53PubMedCrossRefGoogle Scholar
  116. Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG (2016) Key mechanisms involved in ionizing radiation-induced systemic effects. Curr Rev Toxicol Res 5:12–33CrossRefGoogle Scholar
  117. Mazdak H, Zia H (2012) Vitamin E reduces superficial bladder cancer recurrence: a randomized controlled trial. Int J Prev Med 3(2):110–115PubMedPubMedCentralGoogle Scholar
  118. Medan D et al (2005) Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages. J Cell Physiol 203:78–84PubMedCrossRefGoogle Scholar
  119. Meier B, Radeke H, Selle S, Younes M, Sies H, Resch K, Habermehl G (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-α. Biochem J 263:539–545PubMedPubMedCentralCrossRefGoogle Scholar
  120. Meng T-C, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399PubMedCrossRefGoogle Scholar
  121. Minamoto T, Mai M, Ze Ronai (1999) K-ras mutation: early detection in molecular diagnosis and risk assessment of colorectal, pancreas, and lung cancers—a review. Cancer Detect Prev 24:1–12Google Scholar
  122. Minamoto T, Ougolkov AV, Mai M (2002) Detection of oncogenes in the diagnosis of cancers with active oncogenic signaling. Expert Rev Mol Diagn 2:565–575PubMedCrossRefGoogle Scholar
  123. Minegaki T et al (2014) Genetic polymorphisms in SLC23A2 as predictive biomarkers of severe acute toxicities after treatment with a definitive 5-fluorouracil/cisplatin-based chemoradiotherapy in Japanese patients with esophageal squamous cell carcinoma. Inte J Med Sci 11:321CrossRefGoogle Scholar
  124. Montero AJ, Jassem J (2011) Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs 71:1385–1396PubMedCrossRefGoogle Scholar
  125. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG, Rumboldt T, Yasir S, Jorda M, Garret-Mayer E, Avisar E, Slingerland J, Silva O, Welsh C, Schuhwerk K, Seo P, Pegram MD, S. Glück S (2012) Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat 132(1):215–223PubMedCrossRefGoogle Scholar
  126. Mookerjee A et al (2006) A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo. BMC Cancer 6:267PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nelson SK, Bose SK, Grunwald GK, Myhill P, McCord JM (2006) The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. Free Radic Biol Med 40:341–347PubMedCrossRefGoogle Scholar
  129. Neumann CA, Fang Q (2007) Are peroxiredoxins tumor suppressors? Curr Opin Pharmacol 7:375–380PubMedCrossRefGoogle Scholar
  130. Nikitaki Z et al (2016) Systemic mechanisms and effects of ionizing radiation: A new ‘old’ paradigm of how the bystanders and distant can become the players. Semin Cell Biol 37:77–95Google Scholar
  131. Ohba M, Shibanuma M, Kuroki T, Nose K (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126:1079–1088PubMedCrossRefGoogle Scholar
  132. Outzen M et al (2016) Selenium status and risk of prostate cancer in a Danish population. Br J Nutr 115:1669–1677PubMedCrossRefGoogle Scholar
  133. Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:2181–2196PubMedCrossRefGoogle Scholar
  134. Padhye S et al (2012) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 32:1131–1158. doi:10.1002/med.20235 PubMedCrossRefGoogle Scholar
  135. Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12(8):1389–1405PubMedCrossRefGoogle Scholar
  136. Park SB et al (2013) Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin 63:419–437PubMedCrossRefGoogle Scholar
  137. Pateras IS et al (2015) The DNA damage response and immune signaling alliance: is it good or bad? Nature decides when and where. Pharmacol Ther 154:36–56PubMedCrossRefGoogle Scholar
  138. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updates 7:97–110CrossRefGoogle Scholar
  139. Perez-Chanona E, Trinchieri G (2016) The role of microbiota in cancer therapy. Curr Opin Immunol 39:75–81PubMedPubMedCentralCrossRefGoogle Scholar
  140. Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192PubMedCrossRefGoogle Scholar
  141. Ravid T, Heidinger JM, Gee P, Khan EM, Goldkorn T (2004) c-Cbl-mediated ubiquitinylation is required for epidermal growth factor receptor exit from the early endosomes. J Biol Chem 279:37153–37162PubMedCrossRefGoogle Scholar
  142. Reid ME et al (2008) The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer 60:155–163PubMedCrossRefGoogle Scholar
  143. Reinehr R, Becker S, Eberle A, Grether-Beck S, Häussinger D (2005) Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem 280:27179–27194PubMedCrossRefGoogle Scholar
  144. Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci 108:1433–1438PubMedPubMedCentralCrossRefGoogle Scholar
  145. Renschler MF (2004) The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 40:1934–1940PubMedCrossRefGoogle Scholar
  146. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17(5):271–285PubMedCrossRefGoogle Scholar
  147. Roy D, Sarkar S, Felty Q (2006) Levels of IL-1 beta control stimulatory/inhibitory growth of cancer cells. Front Biosci 11:889–898PubMedCrossRefGoogle Scholar
  148. Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL (2013) Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Investig 123:4945–4949PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ryoo K, Huh S-H, Lee YH, Yoon KW, Cho S-G, Choi E-J (2004) Negative regulation of MEKK1-induced signaling by glutathione S-transferase Mu. J Biol Chem 279:43589–43594PubMedCrossRefGoogle Scholar
  150. Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ (2012) Subcellular targets of cisplatin cytotoxicity: an integrated view. Pharmacol Ther 136:35–55PubMedCrossRefGoogle Scholar
  151. Sato K, Yuasa T, Nogawa M, Kimura S, Segawa H, Yokota A, Maekawa T (2006) A third-generation bisphosphonate, minodronic acid (YM529), successfully prevented the growth of bladder cancer in vitro and in vivo. Br J Cancer 95:1354–1361PubMedPubMedCentralCrossRefGoogle Scholar
  152. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427PubMedCrossRefGoogle Scholar
  153. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38PubMedCrossRefGoogle Scholar
  154. Scherz-Shouval R, Shvets E, Elazar Z (2007a) Oxidation as a post-translational modification that regulates autophagy. Autophagy 3:371–373PubMedCrossRefGoogle Scholar
  155. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007b) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760PubMedPubMedCentralCrossRefGoogle Scholar
  156. Schildknecht S et al (2014) The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite. Curr Med Chem 21:365–376PubMedCrossRefGoogle Scholar
  157. Seifried HE, McDonald SS, Anderson DE, Greenwald P, Milner JA (2003) The antioxidant conundrum in cancer. Cancer Res 63:4295–4298PubMedGoogle Scholar
  158. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579PubMedCrossRefGoogle Scholar
  159. Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC (2004) Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 6:289–300PubMedCrossRefGoogle Scholar
  160. Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A, Lewis TA, Maglathin RL, Tolliday N, Jacks T (2011) Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci 108(21):8773–8778PubMedPubMedCentralCrossRefGoogle Scholar
  161. Shen B, He P-J, Shao C-L (2013) Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS One 8:e84610PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shinozaki K, Hosokawa Y, Hazawa M, Kashiwakura I, Okumura K, Kaku T, Nakayama E (2011) Ascorbic acid enhances radiation-induced apoptosis in an HL60 human leukemia cell line. J Radiat Res 52:229–237PubMedCrossRefGoogle Scholar
  163. Siddiqui IA, Adhami VM, Saleem M, Mukhtar H (2006) Beneficial effects of tea and its polyphenols against prostate cancer. Mol Nutr Food Res 50:130–143PubMedCrossRefGoogle Scholar
  164. Šimůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61(1):154–171PubMedCrossRefGoogle Scholar
  165. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Ann Rev Biochem doi:10.1146/annurev-biochem-061516-045037 PubMedGoogle Scholar
  166. Solban N, Rizvi I, Hasan T (2006) Targeted photodynamic therapy. Lasers Surg Med 38:522–531PubMedCrossRefGoogle Scholar
  167. Song JJ, Lee YJ (2003) Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. Biochem J 373:845PubMedPubMedCentralCrossRefGoogle Scholar
  168. Soule BP et al (2007) The chemistry and biology of nitroxide compounds. Free Radic Biol Med 42:1632–1650PubMedPubMedCentralCrossRefGoogle Scholar
  169. Stewart BW, Wild CP (2014) World Cancer Report 2014. IARCGoogle Scholar
  170. Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896PubMedCrossRefGoogle Scholar
  171. Sun J et al (2016) Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo American. J Cancer Res 6:1271Google Scholar
  172. Sundaresan M, Yu Z-X, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296PubMedCrossRefGoogle Scholar
  173. Suzuki-Karasaki Y, Suzuki-Karasaki M, Uchida M, Ochiai T (2014) Depolarization controls TRAIL-sensitization and tumor-selective killing of cancer cells: crosstalk with ROS. Front Oncol 4:128PubMedPubMedCentralCrossRefGoogle Scholar
  174. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Can Res 51:794–798Google Scholar
  175. Takemura N et al (2014) Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nat Commun 5:3492. doi:10.1038/ncomms4492 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tian X et al (2014) Bufalin loaded biotinylated chitosan nanoparticles: an efficient drug delivery system for targeted chemotherapy against breast carcinoma. Eur J Pharm Biopharm 87:445–453PubMedCrossRefGoogle Scholar
  177. Tiku M, Liesch J, Robertson F (1990) Production of hydrogen peroxide by rabbit articular chondrocytes. Enhancement by cytokines. J Immunol 145:690–696PubMedGoogle Scholar
  178. Tobe R, Yoo M-H, Fradejas N, Carlson BA, Calvo S, Gladyshev VN, Hatfield DL (2012) Thioredoxin reductase 1 deficiency enhances selenite toxicity in cancer cells via a thioredoxin-independent mechanism. Biochem J 445:423–430PubMedPubMedCentralCrossRefGoogle Scholar
  179. Toler SM, Noe D, Sharma A (2006) Selective enhancement of cellular oxidative stress by chloroquine: implications for the treatment of glioblastoma multiforme. Neurosurg Focus 21:1–4CrossRefGoogle Scholar
  180. Touchefeu Y et al (2014) Systematic review: the role of the gut microbiota in chemotherapy-or radiation-induced gastrointestinal mucositis—current evidence and potential clinical applications. Aliment Pharmacol Ther 40:409–421PubMedGoogle Scholar
  181. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369PubMedCrossRefGoogle Scholar
  182. Trachootham D et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–252PubMedCrossRefGoogle Scholar
  183. Traverso N et al (2013) Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013:972913. doi:10.1155/2013/972913 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Uchikura K et al (2004) Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 287:G620–G626PubMedCrossRefGoogle Scholar
  185. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266:37–52PubMedPubMedCentralCrossRefGoogle Scholar
  186. Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L (2013) Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2:e25238PubMedPubMedCentralCrossRefGoogle Scholar
  187. Venkataraman S et al (2005) Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 24:77–89PubMedCrossRefGoogle Scholar
  188. Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7:1875–1884PubMedCrossRefGoogle Scholar
  189. Wang X, Zhang J, Xu T (2007) Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo. Toxicol Appl Pharmacol 218:88–95PubMedCrossRefGoogle Scholar
  190. Wang Y et al (2015) Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism. Food Chem Toxicol 83:251–260PubMedCrossRefGoogle Scholar
  191. Weekley CM, Aitken JB, Finney L, Vogt S, Witting PK, Harris HH (2013) Selenium metabolism in cancer cells: the combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients 5:1734–1756PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wright ME et al (2009) Genetic variation in sodium-dependent ascorbic acid transporters and risk of gastric cancer in Poland. Eur J Cancer 45:1824–1830PubMedPubMedCentralCrossRefGoogle Scholar
  193. Wu X-J, Hua X (2007) Targeting ROS: selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound. Cancer Biol Ther 6:646–647PubMedCrossRefGoogle Scholar
  194. Wu JH, Miao W, Hu LG, Batist G (2010) Identification and characterization of novel Nrf2 inducers designed to target the intervening region of Keap1. Chem Biol Drug Des 75:475–480PubMedCrossRefGoogle Scholar
  195. Wu X, Cheng J, Wang X (2017) Dietary antioxidants: potential anticancer agents. Nutr Cancer 69(4):521–533PubMedCrossRefGoogle Scholar
  196. Yamagishi S-I et al (2004) Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling. Am J Pathol 165:1865–1874PubMedPubMedCentralCrossRefGoogle Scholar
  197. Yi J, Gao F, Shi G, Li H, Wang Z, Shi X, Tang X (2002) The inherent cellular level of reactive oxygen species: one of the mechanisms determining apoptotic susceptibility of leukemic cells to arsenic trioxide. Apoptosis 7:209–215PubMedCrossRefGoogle Scholar
  198. Yi J, Yang J, He R, Gao F, Sang H, Tang X, Richard DY (2004) Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Can Res 64:108–116CrossRefGoogle Scholar
  199. Yoshida T et al (2017) Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. Exp Toxicol Pathol 69:9–16PubMedCrossRefGoogle Scholar
  200. Yoshida T, Goto S, Kawakatsu M, Urata Y, Li T-S (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 46(2):147–153PubMedCrossRefGoogle Scholar
  201. Yours S, Liochev S, Fridovich I, Koppenol W (1999) The relative importance of ho and onoo-in mediating the toxicity of o-. Author’s reply. Free Radic Biol Med 26:777–778CrossRefGoogle Scholar
  202. Zhang L et al (2011) New insight into the Nox4 subcellular localization in HEK293 cells: first monoclonal antibodies against Nox4. Biochimie 93:457–468PubMedCrossRefGoogle Scholar
  203. Zhao X-B et al (2014) Design and synthesis of novel spin-labeled camptothecin derivatives as potent cytotoxic agents. Bioorg Med Chem 22:6453–6458PubMedPubMedCentralCrossRefGoogle Scholar
  204. Zhu X, Wang K, Zhang K, Zhu L, Zhou F (2014) Ziyuglycoside II induces cell cycle arrest and apoptosis through activation of ROS/JNK pathway in human breast cancer cells. Toxicol Lett 227:65–73PubMedCrossRefGoogle Scholar
  205. Zhu X-H et al (2016) Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives. J Mol Struct 1108:611–617CrossRefGoogle Scholar
  206. Zhu S, Pabla N, Tang C, He L, Dong Z (2015) DNA damage response in cisplatin-induced nephrotoxicity. Arch Toxicol 89:2197–2205PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zhu J, Song X, Lin H-P, Young DC, Yan S, Marquez VE, Chen C-S (2002) Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst 94:1745–1757PubMedCrossRefGoogle Scholar
  208. Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Bioinformatics and BiotechnologyInternational Islamic UniversityIslamabadPakistan
  2. 2.Institute of Basic Medical SciencesKhyber Medical University (KMU)PeshawarPakistan
  3. 3.Department of BiologyPMAS-Arid Agriculture UniversityRawalpindiPakistan
  4. 4.Department of Pathology and Blood BankShaheed Zulfiqar Ali Bhutto Medical UniversityIslamabadPakistan
  5. 5.Department of Clinical Laboratory Medicine, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Department of Family and Community Medicine, College of MedicineKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations