Skip to main content

Novel insights into the link between fetal cell microchimerism and maternal cancers

Abstract

Introduction

Fetal cell microchimerism (FCM) is defined as the persistence of fetal cells in the mother for decades after pregnancy without any apparent rejection. Fetal microchimeric cells (fmcs) engraft the maternal bone marrow and are able to migrate through the circulation and to reach tissues. In malignancies, the possible role of fmcs is still controversial, several studies advising a protective and repairing function, and other postulating a beneficial role in the progression of the disease. At the peripheral blood level, FCM is less frequently observed in women with several solid and hematological neoplasia with respect to healthy controls, suggesting a beneficial role in cancer surveillance. At the tissue level, fmcs were documented in neoplastic lesions of thyroid, breast, cervix, lung and melanoma, displaying epithelial, hematopoietic, mesenchymal and endothelial lineage differentiation. Fmcs expressing hematopoietic markers were hypothesized to have a role in the attack to neoplastic cells, whereas those expressing epithelial or mesenchymal antigens could be involved in repair and replacement of damaged cells. On the other hand, fetal cells showing an endothelial phenotype could have a role in tumor evolution and progression. The positive effect of FCM is supported by findings in animal models.

Conclusions

This review provides an extensive overview of the link between fetal cell microchimerism and maternal cancers. Moreover, biological mechanisms by which fetal cell microchimerism is believed to modulate the protection against cancer development or tumor progression will be discussed, together with findings in animal models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ariga H, Ohto H, Busch MP, Imamura S, Watson R, Reed W, Lee TH (2001) Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41:1524–1530

    CAS  Article  PubMed  Google Scholar 

  • Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93:705–708

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cha D, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson KL (2003) Cervical cancer and microchimerism. Obstet Gynecol 102:774–781

    PubMed  Google Scholar 

  • Cirello V, Recalcati MP, Muzza M, Rossi S, Perrino M, Vicentini L, Beck-Peccoz P, Finelli P, Fugazzola L (2008) Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Res 68:8482–8488

    CAS  Article  PubMed  Google Scholar 

  • Cirello V, Perrino M, Colombo C, Muzza M, Filopanti M, Vicentini L, Beck-Peccoz P, Fugazzola L (2010) Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. Int J Cancer 126:2874–2878

    CAS  PubMed  Google Scholar 

  • Cirello V, Colombo C, Perrino M, De Leo S, Muzza M, Maffini MA, Fugazzola L (2015) Fetal cell microchimerism in papillary thyroid cancer: a role in the outcome of the disease. Int J Cancer 137:2989–2993

    CAS  Article  PubMed  Google Scholar 

  • Dhimolea E, Denes V, Lakk M, Al-Bazzaz S, Aziz-Zaman S, Pilichowska M, Geck P (2013) High male chimerism in the female breast shows quantitative links with cancer. Int J Cancer 133:835–842

    CAS  Article  PubMed  Google Scholar 

  • Dubernard G, Aractingi S, Oster M, Rouzier R, Mathieu MC, Uzan S, Khosrotehrani K (2008) Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res 10:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubernard G, Oster M, Chareyre F, Antoine M, Rouzier R, Uzan S, Aractingi S, Nguyen Huu S, Oster M, Avril MF, Boitier F, Mortier L, Richard MA, Kerob D, Maubec E, Souteyrand P, Moguelet P, Khosrotehrani K, Aractingi S (2009) Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol 174:630–637

    Article  Google Scholar 

  • Eun JK, Guthrie KA, Zirpoli G, Gadi VK (2013) In Situ Breast Cancer and Microchimerism. Sci Rep 3:2192

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL (1999) Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 93:2033–2037

    CAS  PubMed  Google Scholar 

  • Fujiki Y, Johnson KL, Tighiouart H, Peter I, Bianchi DW (2008) Fetomaternal trafficking in the mouse increases as delivery approaches and is highest in the maternal lung. Biol Reprod 79:841–848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Fujiki Y, Johnson KL, Peter I, Tighiouart H, Bianchi DW (2009) Fetal cells in the pregnant mouse are diverse and express a variety of progenitor and differentiated cell markers. Biol Reprod 81:26–32

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gadi VK (2009) Fetal microchimerism and cancer. Cancer Lett 276:8–13

    CAS  Article  PubMed  Google Scholar 

  • Gadi VK (2010) Fetal microchimerism in breast from women with and without breast cancer. Breast Cancer Res Treat 121:241–244

    Article  PubMed  Google Scholar 

  • Gadi VK, Nelson JL (2007) Fetal microchimerism in women with breast cancer. Cancer Res 67:9035–9038

    CAS  Article  PubMed  Google Scholar 

  • Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL (2008) Case-control study of fetal microchimerism and breast cancer. PLoS ONE 3:e1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmore GL, Haq B, Shadduck RK, Jasthy SL, Lister J (2008) Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol 36:1073–1077

    CAS  Article  PubMed  Google Scholar 

  • Guettier C, Sebagh M, Buard J, Feneux D, Ortin-Serrano M, Gigou M, Tricottet V, Reynès M, Samuel D, Féray C (2005) Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology 42:35–43

    Article  PubMed  Google Scholar 

  • Hromadnikova I, Kotlabova K, Pirkova P, Libalova P, Vernerova Z, Svoboda B, Kucera E (2014) The occurrence of fetal microchimeric cells in endometrial tissues is a very common phenomenon in benign uterine disorders, and the lower prevalence of fetal microchimerism is associated with better uterine cancer prognoses. DNA Cell Biol 33:40–48

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez DF, Leapley AC, Lee CI, Ultsch MN, Tarantal AF (2005) Fetal CD34+ cells in the maternal circulation and long-term microchimerism in rhesus monkeys (Macaca mulatta). Transplantation 79:142–146

    Article  PubMed  Google Scholar 

  • Johnson KL, Bianchi DW (2004) Fetal cells in maternal tissue following pregnancy: what are the consequences? Hum Reprod Update 10:497–502

    Article  PubMed  Google Scholar 

  • Kamper-Jørgensen M (2012) Microchimerism and survival after breast and colon cancer diagnosis. Chimerism 3:72–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamper-Jørgensen M, Biggar RJ, Tjønneland A, Hjalgrim H, Kroman N, Rostgaard K, Stamper CL, Olsen A, Andersen AM, Gadi VK (2012) Opposite effects of microchimerism on breast and colon cancer. Eur J Cancer 48:2227–2235

    Article  PubMed  Google Scholar 

  • Kara RJ, Bolli P, Matsunaga I, Tanweer O, Altman P, Chaudhry HW (2012) A mouse model for fetal maternal stem cell transfer during ischemic cardiac injury. Clin Transl Sci 5:321–328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Khosrotehrani K (2009) Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. Int J Cancer 124:1054–1059

    Article  PubMed  Google Scholar 

  • Khosrotehrani K, Bianchi DW (2005) Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118:1559–1563

    CAS  Article  PubMed  Google Scholar 

  • Khosrotehrani K, Johnson KL, Lau J, Dupuy A, Cha DH, Bianchi DW (2003) The influence of fetal loss on the presence of fetal cell microchimerism: a systemic review. Arthritis Rheum 48:3237–3241

    Article  PubMed  Google Scholar 

  • Khosrotehrani K, Johnson KL, Guégan S, Stroh H, Bianchi DW (2005) Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol 66:1–12

    CAS  Article  PubMed  Google Scholar 

  • Khosrotehrani K, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, Stroh H, Guégan S, Bianchi DW (2007) Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod 22:654–661

    CAS  Article  PubMed  Google Scholar 

  • Kumar SR, Hansen SA, Axiak-Bechtel SM, Bryan JN (2013) The health effects of fetal microchimerism can be modeled in companion dogs. Chimerism 4:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert NC, Lo YM, Erickson TD, Tylee TS, Guthrie KA, Furst DE, Nelson JL (2002) Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood 100:2845–2851

    CAS  Article  PubMed  Google Scholar 

  • Loubière LS, Lambert NC, Flinn LJ, Erickson TD, Yan Z, Guthrie KA, Vickers KT, Nelson JL (2006) Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab Invest 86:1185–1192

    PubMed  Google Scholar 

  • Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, Nelson JL (1999) Microchimerism of maternal origin persists into adult life. J Clin Invest 104:41–47

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nassar D, Droitcourt C, Mathieu-d’Argent E, Kim MJ, Khosrotehrani K, Aractingi S (2012) Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. FASEB J 26:149–157

    CAS  Article  PubMed  Google Scholar 

  • Nguyen Huu S, Khosrotehrani K, Oster M, Moguelet P, Espié MJ, Aractingi S (2008) Early phase of maternal skin carcinogenesis recruits long-term engrafted fetal cells. Int J Cancer 123:2512–2517

    Article  PubMed  Google Scholar 

  • Nguyen Huu S, Oster M, Avril MF, Boitier F, Mortier L, Richard MA, Kerob D, Maubec E, Souteyrand P, Moguelet P, Khosrotehrani K, Aractingi S (2009) Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol 174:630–637

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182

    Article  PubMed  Google Scholar 

  • O’Donoghue K, Sultan HA, Al-Allaf FA, Anderson JR, Wyatt-Ashmead J, Fisk NM (2008) Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reprod Biomed Online 16:382–390

    Article  PubMed  Google Scholar 

  • Parant O, Dubernard G, Challier JC, Oster M, Uzan S, Aractingi S, Khosrotehrani K (2009) CD34+ cells in maternal placental blood are mainly fetal in origin and express endothelial markers. Lab Invest 89:915–923

    CAS  Article  PubMed  Google Scholar 

  • Pritchard S, Hoffman AM, Johnson KL, Bianchi DW (2011) Pregnancy-associated progenitor cells: an under-recognized potential source of stem cells in maternal lung. Placenta 32:S298–S303

    CAS  Article  PubMed  Google Scholar 

  • Sawicki JA (2008) Fetal microchimerism and cancer. Cancer Res 68:9567–9569

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Seppanen E, Fisk NM, Khosrotehrani K (2013a) Pregnancy-acquired fetal progenitor cells. J Reprod Immunol 97:27–35

    CAS  Article  PubMed  Google Scholar 

  • Seppanen E, Roy E, Ellis R, Bou-Gharios G, Fisk NM, Khosrotehrani K (2013b) Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS ONE 8:e62662

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Sunami R, Komuro M, Tagaya H, Hirata S (2010) Migration of microchimeric fetal cells into maternal circulation before placenta formation. Chimerism 1:66–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS (2005) Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier? Stem Cells 23:1443–1452

    CAS  Article  PubMed  Google Scholar 

  • Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, Imai E, Hori M (2004) Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun 325:961–967

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fugazzola.

Ethics declarations

Conflict of interest

Valentina Cirello declares that she has no conflict of interest. Laura Fugazzola declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cirello, V., Fugazzola, L. Novel insights into the link between fetal cell microchimerism and maternal cancers. J Cancer Res Clin Oncol 142, 1697–1704 (2016). https://doi.org/10.1007/s00432-015-2110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2110-3

Keywords

  • Microchimerism
  • Fetal cells
  • Women
  • Cancer