Skip to main content

Advertisement

Log in

miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML).

Methods

Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined.

Results

We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro.

Conclusion

The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai H, Cao Z, Deng C, Zhou L, Wang C (2012) miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol 138(4):595–602

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bisso A, Faleschini M, Zampa F, Capaci V, De Santa J et al (2013) Oncogenic miR-181a-5p/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 12:1679–1687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cai J, Guan H, Fang L, Yang Y, Zhu X et al (2013) MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis. J Clin Invest 123:566–579

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Choong ML, Yang HH, McNiece I (2007) MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 35:551–564

    Article  PubMed  CAS  Google Scholar 

  • Cichocki F, Felices M, McCullar V, Presnell SR, Al-Attar A et al (2011) Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol 187:6171–6175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-Mclver A et al (2007) MicroRNA miR-181a-5p correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21(5):912–916

    PubMed  CAS  Google Scholar 

  • Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H et al (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556

    Article  PubMed  CAS  Google Scholar 

  • Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  • Estey E, Döhner H (2006) Acute myeloid leukaemia. Lancet 368:1894–1907

    Article  PubMed  Google Scholar 

  • Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES (2012) MiR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating FAS expression. Cancer Res 72:908–916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39:493–506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Li QJ, Chau J, Ebert PJ, Sylvester G, Min H et al (2007) miR-181a-5p is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    Article  PubMed  CAS  Google Scholar 

  • Li H, Hui L, Xu W (2012a) miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim Biophys Sin (Shanghai) 44(3):269–277

    Article  CAS  Google Scholar 

  • Li X, Zhang J, Gao L, McClellan S, Finan MA et al (2012b) miR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit. Cell Death Differ 19:378–386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Z, Huang H, Li Y, Jiang X, Chen P et al (2012c) Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 119(10):2314–2324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Löwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051–1062

    Article  PubMed  Google Scholar 

  • Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919–1928

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Zhao JL, Rao DS (2011) MicroRNA function in myeloid biology. Blood 118:2960–2969

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang YB, Lu Y, Yue S, Giffard RG (2012) miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion 12:213–219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 105:12885–12890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B et al (2009) Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma 50:1854–1859

    Article  PubMed  CAS  Google Scholar 

  • Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB et al (2010) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28(36):5257–5264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shi L, Cheng Z, Zhang J, Li R, Zhao P et al (2008) Hsa-miR-181a-5p and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193

    Article  PubMed  CAS  Google Scholar 

  • Shin KH, Bae SD, Hong HS, Kim RH, Kang MK et al (2011) miR-181a-5p shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem Biophys Res Commun 404:896–902

    Article  PubMed  CAS  Google Scholar 

  • Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-β upregulates miR-181a-5p expression to promote breast cancer metastasis. J Clin Invest 123:150–163

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136:586–591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Gocek E, Liu CG, Studzinski GP (2009) MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 8:736–741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang B, Hsu SH, Majumder S, Kutay H, Huang W et al (2010) TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29:1787–1797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang H, Cho ME, Li TW, Peng H, Ko KS et al (2013) MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J Clin Invest 123:285–298

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhai XF, Fang FF, Liu Q, Meng YB, Guo YY et al (2013) miR-181a-5p contributes to bufalin-induced apoptosis in PC-3 prostate cancer cells. BMC Complement Altern Med 13:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS et al (2009) MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 4(11):e7826

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuang LK, Xu GP, Pan XR, Lou YJ, Zou QP et al (2014) MicroRNA-181a-mediated downregulation of AC9 protein decreases intracellular cAMP level and inhibits ATRA-induced APL cell differentiation. Cell Death Dis 5(4):e1161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature and Science Grant of China (81272310).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xu.

Additional information

Xiaodan Liu, Wang Liao and Hongxia Peng authors have contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1

The relationship of miR-181a expression and prognosis in 27 AML patients with complete follow-up data. a miR-181a expression in patients who achieved a complete remission versus patients who developed distant relapse or death. b Relapse-free survival according to miR-181a expression levels in pediatric AML patients with high (above the median miR-181a expression value) or low (at or below the median miR-181a expression value) expression groups. Statistical differences between curves were calculated using the log-rank test (TIFF 10822 kb)

Supplement Table 1

Characteristics of pediatric AML patients (N = 57) (DOCX 17 kb)

Supplement Table 2

Primers and other oligonucleotides sequences (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liao, W., Peng, H. et al. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol 142, 77–87 (2016). https://doi.org/10.1007/s00432-015-1995-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1995-1

Keywords

Navigation