Skip to main content
Log in

Overexpression of BCL2 and BAX following BFM induction therapy predicts ch-ALL patients’ poor response to treatment and short-term relapse

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The identification of childhood acute lymphoblastic leukemia (ch-ALL) patients who are at a higher risk of chemotherapy resistance and relapse is essential for successful treatment decisions, despite the application of novel therapies. The aim of the study is the evaluation of BCL2 and BAX expression for the prognosis of ch-ALL patients treated with Berlin–Frankfurt–Münster (BFM) backbone protocol.

Methods

Bone marrow specimens were obtained at the time of diagnosis and on day 33 following BFM treatment induction from 82 ch-ALL patients, as well as from 63 healthy children. Following extraction, total RNA was reverse transcribed and BCL2 and BAX expression levels were determined by qPCR.

Results

BCL2 expression and BCL2/BAX ratio were strongly upregulated in ch-ALL compared to healthy children and were correlated with favorable prognostic disease features. Increased levels of BCL2 and BAX expression were associated with disease remission, as ch-ALL patients with lower expression ran a significantly higher risk of M2–M3 response, positive MRD and poor survival outcome. Moreover, the upregulation of BCL2 and BAX following BFM treatment induction was shown to represent an independent predictor of patients’ short-term relapse, which was further confirmed in ch-ALL patients with favorable prognostic markers.

Conclusions

In conclusion, BCL2 and BAX could be effectively used for an enhanced prediction of BFM-treated patients’ outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allouche M, Bettaieb A, Vindis C, Rousse A, Grignon C, Laurent G (1997) Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene 14:1837–1845. doi:10.1038/sj.onc.1201023

    Article  CAS  PubMed  Google Scholar 

  • Campana D et al (1993) Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood 81:1025–1031

    CAS  PubMed  Google Scholar 

  • Carroll WL et al (2003) Pediatric acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program 2003:102–131

  • Carroll WL, Bhojwani D, Min DJ, Moskowitz N, Raetz EA (2006) Childhood acute lymphoblastic leukemia in the age of genomics. Pediatr Blood Cancer 46:570–578. doi:10.1002/pbc.20722

    Article  PubMed  Google Scholar 

  • Casale F et al (2003) Determination of the in vivo effects of prednisone on Bcl-2 family protein expression in childhood acute lymphoblastic leukemia. Int J Oncol 22:123–128

    CAS  PubMed  Google Scholar 

  • Chandra D, Choy G, Daniel PT, Tang DG (2005) Bax-dependent regulation of Bak by voltage-dependent anion channel 2. J Biol Chem 280:19051–19061. doi:10.1074/jbc.M501391200

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949. doi:10.1073/pnas.0506654102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coustan-Smith E et al (1996) Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 87:1140–1146

    CAS  PubMed  Google Scholar 

  • Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16:33–45. doi:10.1101/gad.949602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu NY, Sukumaran SK, Kerk SY, Yu VC (2009) Baxbeta: a constitutively active human Bax isoform that is under tight regulatory control by the proteasomal degradation mechanism. Mol Cell 33:15–29. doi:10.1016/j.molcel.2008.11.025

    Article  CAS  PubMed  Google Scholar 

  • Gala JL, Vermylen C, Cornu G, Ferrant A, Michaux JL, Philippe M, Martiat P (1994) High expression of bcl-2 is the rule in acute lymphoblastic leukemia, except in Burkitt subtype at presentation, and is not correlated with the prognosis. Ann Hematol 69:17–24

    Article  CAS  PubMed  Google Scholar 

  • Hargrave DR et al (2001) Progressive reduction in treatment-related deaths in Medical Research Council childhood lymphoblastic leukaemia trials from 1980 to 1997 (UKALL VIII, X and XI). Br J Haematol 112:293–299

    Article  CAS  PubMed  Google Scholar 

  • Hickman JA (1996) Apoptosis and chemotherapy resistance. Eur J Cancer 32A:921–926

    Article  CAS  PubMed  Google Scholar 

  • Hunger SP et al (2012) Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol 30:1663–1669. doi:10.1200/JCO.2011.37.8018

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang MH et al (2007) Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo. Blood 110:2057–2066. doi:10.1182/blood-2007-03-080325

    Article  CAS  PubMed  Google Scholar 

  • Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896. doi:10.1007/s10495-007-0749-1

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Narayan S, Chandra J, Sharma M, Naithani R, Sharma S (2007) Expression of apoptosis regulators Bcl-2 and Bax in childhood acute lymphoblastic leukemia. Hematology 12:39–43. doi:10.1080/10245330600938125

    Article  CAS  PubMed  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  • Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S, Kofler R (2008) The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 22:370–377. doi:10.1038/sj.leu.2405039

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178. doi:10.1056/NEJMra052603

    Article  CAS  PubMed  Google Scholar 

  • Pui CH, Mullighan CG, Evans WE, Relling MV (2012) Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 120:1165–1174. doi:10.1182/blood-2012-05-378943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainer J et al (2009) Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 23:746–752. doi:10.1038/leu.2008.370

    Article  CAS  PubMed  Google Scholar 

  • Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ (1999) Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol Cell Biol 19:5036–5049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salomons GS et al (1997) The Bax alpha:Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia. Int J Cancer 71:959–965

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Coleman MP (2007) Increasing incidence of childhood leukaemia: a controversy re-examined. Br J Cancer 97:1009–1012. doi:10.1038/sj.bjc.6603946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30. doi:10.3322/caac.21166

    Article  PubMed  Google Scholar 

  • Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL (1998) Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18:3509–3517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow S, McColl K, Rong Y, Lam M, Gupta A, Distelhorst CW (2008) Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes. Autophagy 4:612–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomadaki H, Scorilas A (2006) BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 43:1–67. doi:10.1080/10408360500295626

    Article  CAS  PubMed  Google Scholar 

  • Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A (2012) The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol 2012:524308. doi:10.1155/2012/524308

    Article  PubMed  PubMed Central  Google Scholar 

  • Uckun FM et al (1997) Cellular expression of antiapoptotic BCL-2 oncoprotein in newly diagnosed childhood acute lymphoblastic leukemia: a Children’s Cancer Group Study. Blood 89:3769–3777

    CAS  PubMed  Google Scholar 

  • Wojcik I, Szybka M, Golanska E, Rieske P, Blonski JZ, Robak T, Bartkowiak J (2005) Abnormalities of the P53, MDM2, BCL2 and BAX genes in acute leukemias. Neoplasma 52:318–324

    CAS  PubMed  Google Scholar 

  • Wuchter C et al (2000) Constitutive expression levels of CD95 and Bcl-2 as well as CD95 function and spontaneous apoptosis in vitro do not predict the response to induction chemotherapy and relapse rate in childhood acute lymphoblastic leukaemia. Br J Haematol 110:154–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Insel PA (2004) The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells. J Biol Chem 279:20858–20865. doi:10.1074/jbc.M310643200

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2004) Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax. J Biol Chem 279:43920–43928. doi:10.1074/jbc.M406412200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359. doi:10.1038/sj.cdd.4401987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to sincerely thank Dr. M. Varvoutsi, Dr. D. Bouhoutsou, Dr. A. Pourtsidis, Dr. D. Doganis and Dr. M. Servitzoglou for their valuable professional assistance in the characterization and collection of our samples. We would also like to thank the nursing staff of the Department of Pediatric Oncology, “P&A Kyriakou” Children’s Hospital for their expert help with the collection of samples. We are also very grateful to Dr. A. Kolialexi for her assistance during the karyotype analysis and to Dr. A. Marmarinos for his contribution in editing the paper.

Conflict of interest

The authors have to declare no conflict of interest (financial or non-financial).

Ethical standard

The study was approved by the Ethics Committee of “P&A Kyriakou” Children’s Hospital, Athens, Greece, and performed with respect to the ethical standards of the Declaration of Helsinki, as revised in 2008.

Informed consent

Informed consent was obtained from parents and legal guardians of the participating patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Gourgiotis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamati, L., Avgeris, M., Kosmidis, H. et al. Overexpression of BCL2 and BAX following BFM induction therapy predicts ch-ALL patients’ poor response to treatment and short-term relapse. J Cancer Res Clin Oncol 141, 2023–2036 (2015). https://doi.org/10.1007/s00432-015-1982-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1982-6

Keywords

Navigation