Skip to main content

Advertisement

Log in

Zinc distribution within breast cancer tissue: A possible marker for histological grading?

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Focusing on the trace metal zinc as a potential biomarker for breast cancer, the literature describes bulk zinc concentrations in breast cancer tissue to be higher than in normal tissue. From a histopathological point of view, cancer cells are intermingled with normal cells of the stroma within breast cancer tissues; therefore, bulk analysis cannot reflect this situation adequately. To address this problem, analysis of zinc distribution in histological sections is the method of choice.

Methods

In the present study, nine samples of invasive ductal and lobular breast carcinoma of histological grade 1–3 were investigated, clearly differentiating between cancer and stroma areas. Zinc concentrations were determined by laser ablation inductively coupled plasma mass spectrometry applying a calibration technique based on spiked polyacrylamide gels.

Results

Direct comparison between hematoxylin- and eosin-stained tissues and zinc contour plots revealed that zinc is enriched in cancer tissue containing tumor cells in contrast to normal stroma. Moreover, zinc concentration in carcinomatous tissues directly correlates with the histological malignancy grade.

Conclusions

Differentiation between carcinomatous tissue and stroma by determination of zinc content and the correlation of zinc concentration with the histological malignancy grade not only provides a key feature for clinical decision making for cancer therapy but also suggests the trace metal zinc as a potential biomarker for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahr A, Karn T, Solbach C, Seiter T, Strebhardt K, Holtrich U, Kaufmann M (2002) Identification of high risk breast-cancer patients by gene expression profiling. Lancet 359(9301):131–132. doi:10.1016/S0140-6736(02)07337-3

    Article  PubMed  Google Scholar 

  • Al-Ebraheem A, Farquharson MJ, Ryan E (2009) The evaluation of biologically important trace metals in liver, kidney and breast tissue. Appl Radiat Isot 67(3):470–474. doi:10.1016/j.apradiso.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  • Al-Ebraheem A, Goettlicher J, Geraki K, Ralph S, Farquharson MJ (2010) The determination of zinc, copper and iron oxidation state in invasive ductal carcinoma of breast tissue and normal surrounding tissue using XANES. X-ray Spectrom 39:332–337

    Article  CAS  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. doi:10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a bioinformatic approach. Acc Chem Res 42(10):1471–1479. doi:10.1021/ar900015x

    Article  CAS  PubMed  Google Scholar 

  • Blindauer CA, Schmid R (2010) Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics 2(8):510. doi:10.1039/c004880a

    Article  CAS  PubMed  Google Scholar 

  • Böcker W, Decker T (2008) Pathologie des invasiven Mammakarzinoms. Onkologe 14(5):443–453. doi:10.1007/s00761-008-1352-y

    Article  Google Scholar 

  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534. doi:10.1007/s00204-011-0775-1

    Article  CAS  PubMed  Google Scholar 

  • Cortesi M, Fridman E, Volkov A, Shilstein SS, Chechik R, Breskin A, Vartsky D, Kleinman N, Kogan G, Moriel E, Gladysh V, Huszar M, Ramon J, Raviv G (2008) Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostate 68(9):994–1006. doi:10.1002/pros.20766

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Vogt S, Olson N, Glass AG, Rohan TE (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomark Prev 16(8):1682–1685. doi:10.1158/1055-9965.EPI-07-0187

    Article  CAS  Google Scholar 

  • da Silva MP, da Silva DM, Ribeiro-Silva A, Poletti ME (2012) Correlations of trace elements in breast human tissues: evaluation of spatial distribution using μ-XRF. AIP Conf Proc 1437:44–49. doi:10.1063/1.3703341

    Google Scholar 

  • Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  CAS  PubMed  Google Scholar 

  • Farquharson MJ, Al-Ebraheem A, Falkenberg G, Leek R, Harris AL, Bradley DA (2008) The distribution of trace elements Ca, Fe, Cu and Zn and the determination of copper oxidation state in breast tumour tissue using μSRXRF and μXANES. Phys Med Biol 53(11):3023–3037. doi:10.1088/0031-9155/53/11/018

    Article  CAS  PubMed  Google Scholar 

  • Farquharson MJ, Al-Ebraheem A, Geraki K, Leek R, Harris AL (2009) Zinc presence in invasive ductal carcinoma of the breast and its correlation with oestrogen receptor status. Phys Med Biol 54(13):4213–4223. doi:10.1088/0031-9155/54/13/016

    Article  CAS  PubMed  Google Scholar 

  • Geraki K, Farquharson MJ, Bradley DA (2002) Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study. Phys Med Biol 47:2327–2339

    Article  CAS  PubMed  Google Scholar 

  • Geraki K, Farquharson MJ, Bradley DA (2004) X-ray fluorescence and energy dispersive X-ray diffraction for the quantification of elemental concentrations in breast tissue. Phys Med Biol 49:99–110

    Article  CAS  PubMed  Google Scholar 

  • Giesen C, Mairinger T, Khoury L, Waentig L, Jakubowski N, Panne U (2011) Multiplexed immunohistochemical detection of tumor markers in breast cancer tissue using laser ablation inductively coupled plasma mass spectrometry. Anal Chem 83(21):8177–8183. doi:10.1021/ac2016823

    Article  CAS  PubMed  Google Scholar 

  • Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. PNAS 26:16770–16775

    Article  Google Scholar 

  • Horng J, Kotch FW, Raines RT (2006) Is glycine a surrogate for a D-amino acid in the collagen triple helix? Protein Sci 16(2):208–215. doi:10.1110/ps.062560107

    Article  PubMed  Google Scholar 

  • Jin R, Bay B, Tan P, Tan BK (1999) Metallothionein expression and zinc levels in invasive ductal breast carcinoma. Oncol Rep 6:871–875

    CAS  PubMed  Google Scholar 

  • Johnson LA, Kanak MA, Kajdacsy-Balla A, Pestaner JP, Bagasra O (2010) Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods 52(4):316–321. doi:10.1016/j.ymeth.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  • Keilin D, Mann T (1940) Carbonic anhydrase. purification and nature of the enzyme. Biochem J 34:1163–1176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee R, Woo W, Kummer A, Duminy H, Xu Z (2003) Zinc accumulation in N-methyl-N-nitrosourea-induced rat mammary tumors is accompanied by an altered expression of ZnT-1 and metallothionein. Exp Biol Med 228:689–696

    CAS  Google Scholar 

  • Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17(3):308–314. doi:10.1097/01.ede.0000209454.41466.b7

    Article  PubMed  Google Scholar 

  • Magalhães T, von Bohlen A, Carvalho ML, Becker M (2006) Trace elements in human cancerous and healthy tissues from the same individual: a comparative study by TXRF and EDXRF. Spectrochim Acta Part B 61(10–11):1185–1193. doi:10.1016/j.sab.2006.06.002

    Article  Google Scholar 

  • Majewska U, Banaś D, Braziewicz J, Góźdź S, Kubala-Kukuś A, Kucharzewski M (2007) Trace element concentration distributions in breast, lung and colon tissues. Phys Med Biol 52(13):3895–3911. doi:10.1088/0031-9155/52/13/016

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2010) Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics 2(2):117. doi:10.1039/b915804a

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2011) Human zinc biochemistry. In: Rink L (ed) Zinc in human health. IOS Press, Aachen, pp 45–62

    Google Scholar 

  • Margalioth E, Schenker J, Chevion M (1983) Copper and zinc levels in normal and malignant tissues. Cancer 52:868–872

    Article  CAS  PubMed  Google Scholar 

  • McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827. doi:10.1021/cr900223a

    Article  CAS  PubMed  Google Scholar 

  • Müller S (2012) Methodenentwicklung zur ortsaufgelösten Untersuchung und Elementquantifizierung von Gewebeschnitten und von cis-Platin behandelten CHO-Zellen mittels Plasma-Massenspektrometrie nach Laser-Ablation. Dissertation, Universität Duisburg-Essen

  • Naga Raju GJ, Sarita P, Ravi Kumar M, Ramana Murty G, Seetharami Reddy B, Lakshminarayana S, Vijayan V, Rama Lakshmi P, Gavarasana S, Bhuloka Reddy S (2006) Trace elemental correlation study in malignant and normal breast tissue by PIXE technique. Nucl Instrum Methods Phys Res Sect B 247(2):361–367. doi:10.1016/j.nimb.2006.02.007

    Article  Google Scholar 

  • Ng KH, Bradley DA, Looi L (1997) Elevated trace element concentrations in malignant breast tissues. Br J Radiol 70:375–382

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, Rijn M, Jeffrey S, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  • Prasad A (2011) Discovery of zinc deficiency in humans and its impact fifty years later. In: Rink L (ed) Zinc in Human Health. IOS Press, Aachen, pp 7–28

    Google Scholar 

  • Quintal SM, dePaula QA, Farrell NP (2011) Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 3(2):121. doi:10.1039/c0mt00070a

    CAS  Google Scholar 

  • Riesop D (2013) Untersuchungen zur ortsaufgelösten Zinkverteilung in Mammakarzinomen und der Korrelation zum Tumortyp und zu histologischen Prognosefaktoren. Dissertation, Universität Duisburg-Essen

  • Rink L (ed) (2011) Zinc in Human Health. IOS Press, Aachen

    Google Scholar 

  • Rizk SL, Sky-Peck HH (1984) Comparison between concentrations of trace elements in normal and neoplastia human breast tissue. Cancer Res 44:5390–5394

    CAS  PubMed  Google Scholar 

  • Santoliquido PM, Southwick HW, Olwin JH (1976) Trace metal levels in cancer of the breast. Surg Gynecol Obstet 142:65–70

    CAS  PubMed  Google Scholar 

  • Seuma J, Bunch J, Cox A, McLeod C, Bell J, Murray C (2008) Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics 8(18):3775–3784. doi:10.1002/pmic.200800167

    Article  CAS  PubMed  Google Scholar 

  • Silva MP, Tomal A, Pérez CA, Ribeiro-Silva A, Poletti ME (2009) Determination of Ca, Fe, Cu and Zn and their correlations in breast cancer and normal adjacent tissues. X-ray Spectrom 38(2):103–111. doi:10.1002/xrs.1126

    Article  CAS  Google Scholar 

  • Silva MP, Soave DF, Ribeiro-Silva A, Poletti ME (2012) Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive X-ray fluorescence. http://www.biomedcentral.com/1756-0500/5/194. Accessed 12 July 2014

  • Silva MP, Silva DM, Conceição ALC, Ribeiro-Silva A, Poletti ME (2013) Role of Ca, Fe, Cu and Zn in breast cancer: study by X-ray fluorescence techniques and immunohistochemical analysis. X-ray Spectrom 42(4):303–311. doi:10.1002/xrs.2470

    Article  CAS  Google Scholar 

  • Taylor K, Gee J, Kille P (2011) Zinc and Cancer. In: Rink L (ed) Zinc in Human Health. IOS Press, Aachen, Germany

    Google Scholar 

  • van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 25:1999–2009

    Article  Google Scholar 

  • Vogelstein B, Fearon ER (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  Google Scholar 

  • Woo W, Zhaoming X (2002) Body zinc distribution profile during N-methyl-N-nitrosourea-induced mammary tumorigenesis in rats at various levels of dietary zinc intake. Biol Trace Elem Res 87:157–169

    Article  CAS  PubMed  Google Scholar 

  • Wu T (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14(3):195–201. doi:10.1016/S1047-2797(03)00119-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the University Duisburg-Essen School of Medicine, i.e., the Department of Pathology for the support in preparing and analyzing the tumor specimens and Prof. Sabine Kasimir-Bauer from the Department of Obstetrics and Gynäkology University Clinic Essen for scientific advice.

Conflict of interest

We declare that we do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfred V. Hirner, Peter Rusch or Agnes Bankfalvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riesop, D., Hirner, A.V., Rusch, P. et al. Zinc distribution within breast cancer tissue: A possible marker for histological grading?. J Cancer Res Clin Oncol 141, 1321–1331 (2015). https://doi.org/10.1007/s00432-015-1932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1932-3

Keywords

Navigation