Skip to main content
Log in

Overexpression of eukaryotic elongation factor 1 alpha-2 is associated with poorer prognosis in patients with gastric cancer

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Eukaryotic elongation factor 1 alpha-2 (eEF1A2) is a protein translation factor involved in protein synthesis. It is overexpressed in various cancers, which indicates potential vital functions in tumorigenesis and progression. Our study aims to investigate the expression levels of eEF1A2 in gastric cancer and its roles in clinical practice.

Methods

A total of 129 patients with pathologically confirmed gastric cancer and 24 normal controls were recruited for this study. The expression levels of eEF1A2 in gastric cancer and normal tissues were evaluated by tissue microarrays, quantitative real-time PCR, and western blot analysis. Kaplan–Meier analysis and Cox’s proportional hazards model were used in survival analysis.

Results

Compared with corresponding controls, gastric cancer specimens had significantly increased expressions of eEF1A2 at mRNA and protein levels (both P < 0.05). Moreover, multivariate analysis confirmed that overexpression of eEF1A2 was a significant and independent indicator for predicting poor prognosis of gastric cancer.

Conclusions

Our results showed for the first time that overexpression of eEF1A2 was correlated with worse outcomes in gastric cancer patients, suggesting its critical roles in the carcinogenesis of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

eEF1A2:

Eukaryotic elongation factor 1 alpha-2

GC:

Gastric cancer

OS:

Overall survival

TMA:

Tissue microarray

TNM:

Tumor-node-metastasis

CI:

Confidence interval

NA:

Not available

NS:

Not significant

References

  • Amiri A, Noei F, Jeganathan S, Kulkarni G, Pinke DE, Lee JM (2007) eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration. Oncogene 26:3027–3040. doi:10.1038/sj.onc.1210101

    Article  CAS  PubMed  Google Scholar 

  • Anand N et al (2002) Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31:301–305. doi:10.1038/ng904

    CAS  PubMed  Google Scholar 

  • Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606. doi:10.1158/0008-5472.CAN-05-0201

    Article  CAS  PubMed  Google Scholar 

  • Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K (2005) Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25:403–413. doi:10.1128/MCB.25.1.403-413.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung CM et al (2005) Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells. Mol Carcinog 43:165–174. doi:10.1002/mc.20098

    Article  CAS  PubMed  Google Scholar 

  • Condeelis J (1995) Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci 20:169–170

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Wu J, Zong M, Song G, Jia Q, Jiang J, Han J (2009) Proteomic profiling in pancreatic cancer with and without lymph node metastasis. Int J Cancer 124:1614–1621. doi:10.1002/ijc.24163

    Article  CAS  PubMed  Google Scholar 

  • Dreher TW, Uhlenbeck OC, Browning KS (1999) Quantitative assessment of EF-1alpha.GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu. J Biol Chem 274:666–672

    Article  CAS  PubMed  Google Scholar 

  • Duanmin H, Chao X, Qi Z (2013) eEF1A2 protein expression correlates with lymph node metastasis and decreased survival in pancreatic ductal adenocarcinoma. Hepatogastroenterology 60:870–875. doi:10.5754/hge12869

    CAS  PubMed  Google Scholar 

  • Grassi G et al (2007) The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie 89:1544–1552. doi:10.1016/j.biochi.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  • Gross SR, Kinzy TG (2005) Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 12:772–778. doi:10.1038/nsmb979

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  • Jimenez C et al (2000) Role of the PI3 K regulatory subunit in the control of actin organization and cell migration. J Cell Biol 151:249–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J et al (2009) The role of translation elongation factor eEF1A in intracellular alkalinization-induced tumor cell growth Laboratory investigation. J Tech Methods Pathol 89:867–874. doi:10.1038/labinvest.2009.53

    Article  CAS  Google Scholar 

  • Knudsen SM, Frydenberg J, Clark BF, Leffers H (1993) Tissue-dependent variation in the expression of elongation factor-1 alpha isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 alpha. European J Biochem/FEBS 215:549–554

    Article  CAS  Google Scholar 

  • Kulkarni G et al (2007) Expression of protein elongation factor eEF1A2 predicts favorable outcome in breast cancer. Breast Cancer Res Treat 102:31–41. doi:10.1007/s10549-006-9315-8

    Article  CAS  PubMed  Google Scholar 

  • Lamberti A et al (2007) C-Raf antagonizes apoptosis induced by IFN-alpha in human lung cancer cells by phosphorylation and increase of the intracellular content of elongation factor 1A. Cell Death Differ 14:952–962. doi:10.1038/sj.cdd.4402102

    CAS  PubMed  Google Scholar 

  • Lee MH, Surh YJ (2009) eEF1A2 as a putative oncogene. Ann N Y Acad Sci 1171:87–93. doi:10.1111/j.1749-6632.2009.04909.x

    Article  CAS  PubMed  Google Scholar 

  • Li R et al (2006) Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25:2628–2635. doi:10.1038/sj.onc.1209289

    Article  CAS  PubMed  Google Scholar 

  • Lund A, Knudsen SM, Vissing H, Clark B, Tommerup N (1996) Assignment of human elongation factor 1alpha genes: EEF1A maps to chromosome 6q14 and EEF1A2 to 20q13.3. Genomics 36:359–361. doi:10.1006/geno.1996.0475

    Article  CAS  PubMed  Google Scholar 

  • McClatchy DB, Fang G, Levey AI (2006) Elongation factor 1A family regulates the recycling of the M4 muscarinic acetylcholine receptor. Neurochem Res 31:975–988. doi:10.1007/s11064-006-9103-1

    Article  CAS  PubMed  Google Scholar 

  • Munshi R, Kandl KA, Carr-Schmid A, Whitacre JL, Adams AE, Kinzy TG (2001) Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast. Genetics 157:1425–1436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murakami D, Tsujitani S, Osaki T, Saito H, Katano K, Tatebe S, Ikeguchi M (2007) Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer 10:45–51. doi:10.1007/s10120-006-0410-7

    Article  CAS  PubMed  Google Scholar 

  • Newbery HJ et al (2005) Progressive loss of motor neuron function in wasted mice: effects of a spontaneous null mutation in the gene for the eEF1 A2 translation factor. J Neuropathol Exp Neurol 64:295–303

    CAS  PubMed  Google Scholar 

  • Ohuchida K et al (2005) The role of S100A6 in pancreatic cancer development and its clinical implication as a diagnostic marker and therapeutic target. Cancer Res 11:7785–7793. doi:10.1158/1078-0432.CCR-05-0714

    CAS  Google Scholar 

  • Olson JM, Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10:125–129. doi:10.1016/j.molmed.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  • Panasyuk G, Nemazanyy I, Filonenko V, Negrutskii B, El’skaya AV (2008) A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules. Int J Biochem Cell Biol 40:63–71. doi:10.1016/j.biocel.2007.08.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinke DE, Kalloger SE, Francetic T, Huntsman DG, Lee JM (2008) The prognostic significance of elongation factor eEF1A2 in ovarian cancer. Gynecol Oncol 108:561–568. doi:10.1016/j.ygyno.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Potrc S, Gadiijev E, Hajdinjak T, Kavalar R (2007) Clinicopathological and immunohistochemical markers after radical gastrectomy for gastric cancer. Hepatogastroenterology 54:308–314

    PubMed  Google Scholar 

  • Sanges C et al (2012) Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells. Cell Death Dis 3:276. doi:10.1038/cddis.2012.16

    Article  Google Scholar 

  • Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560. doi:10.1038/nature04518

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi N, Inomata M, Osawa N, Yasuda K, Adachi Y, Kitano S (2000) Early and late recurrence after gastrectomy for gastric carcinoma. Univariate and multivariate analyses. Cancer 89:255–261

    Article  CAS  PubMed  Google Scholar 

  • Soares DC, Barlow PN, Newbery HJ, Porteous DJ, Abbott CM (2009) Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS ONE 4:e6315. doi:10.1371/journal.pone.0006315

    Article  PubMed Central  PubMed  Google Scholar 

  • Suda M et al (1999) Overproduction of elongation factor 1alpha, an essential translational component, causes aberrant cell morphology by affecting the control of growth polarity in fission yeast. Genes Cells 4:517–527

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Chu D, Li W, Chu X, Li Y, Wei D, Li H (2009) Decreased expression of NDRG1 in glioma is related to tumor progression and survival of patients. J Neuro Oncol 94:213–219. doi:10.1007/s11060-009-9859-7

    Article  CAS  Google Scholar 

  • Thornton S, Anand N, Purcell D, Lee J (2003) Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med 81:536–548. doi:10.1007/s00109-003-0461-8

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson VA et al (2005) Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. BMC Cancer 5:113. doi:10.1186/1471-2407-5-113

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiang ZL, Zeng ZC, Fan J, Tang ZY, Zeng HY, Gao DM (2011) Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1alpha, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma. Clin Cancer Res 17:5463–5472. doi:10.1158/1078-0432.CCR-10-3096

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Hu DM, Zhu Q (2013) eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin Exp Metastasis 30:933–944. doi:10.1007/s10585-013-9593-6

    Article  PubMed  Google Scholar 

  • Yokota T et al (2002) Is tumor size a prognostic indicator for gastric carcinoma? Anticancer Res 22:3673–3677

    PubMed  Google Scholar 

  • Yokota T et al (2004) Lymph node metastasis as a significant prognostic factor in gastric cancer: a multiple logistic regression analysis. Scand J Gastroenterol 39:380–384

    Article  CAS  PubMed  Google Scholar 

  • Zhang S et al (2010) A variant in the CHEK2 promoter at a methylation site relieves transcriptional repression and confers reduced risk of lung cancer. Carcinogenesis 31:1251–1258. doi:10.1093/carcin/bgq089

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Wang L, Ajani J, Xie K (2004) Molecular basis of gastric cancer development and progression. Gastric Cancer 7:61–77. doi:10.1007/s10120-004-0277-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the participation of patients. This work was funded by the National Natural Science Foundation of China (Grant Nos. 30871207, 81270454), Natural Science Foundation of Anhui Province (No. 12070403086) and Key Project of Education Department of Anhui Province (KJ2008A154).

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daru Lu or Yongxiang Li.

Additional information

Song Yang and Mingdian Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Lu, M., Chen, Y. et al. Overexpression of eukaryotic elongation factor 1 alpha-2 is associated with poorer prognosis in patients with gastric cancer. J Cancer Res Clin Oncol 141, 1265–1275 (2015). https://doi.org/10.1007/s00432-014-1897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1897-7

Keywords

Navigation