Skip to main content

Advertisement

Log in

Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler M, Müller K, Rached E, Dekant W, Mally A (2009) Modulation of key regulators of mitosis linked to chromosomal instability is an early event in ochratoxin A carcinogenicity. Carcinogenesis 30:711–719

    Article  PubMed  CAS  Google Scholar 

  • Andrisani OM, Barnabas S (1999) The transcriptional function of the hepatitis B virus X protein and its role in hepatocarcinogenesis (review). Int J Oncol 15:373–379

    PubMed  CAS  Google Scholar 

  • Arun P, Aleti V, Parikh K, Manne V, Chilukuri N (2011) Senescence marker protein 30 (SMP30) expression in eukaryotic cells: existence of multiple species and membrane localization. PLoS One 6:e16545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balsano C, Avantaggiati ML, Natoli G, De Marzio E, Will H, Perricaudet M, Levrero M (1991) Full-length and truncated versions of the hepatitis B virus (HBV) X protein (pX) transactivate the cmyc protooncogene at the transcriptional level. Biochem Biophys Res Commun 176:985–992

    Article  PubMed  CAS  Google Scholar 

  • Bastide K, Ugolin N, Levalois C, Bernaudin JF, Chevillard S (2010) Are adenosquamous lung carcinomas a simple mix of adenocarcinomas and squamous cell carcinomas, or more complex at the molecular level? Lung Cancer 68:1–9

    Article  PubMed  Google Scholar 

  • Benn J, Schneider RJ (1994) Hepatitis B virus HBx protein activates Ras–GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci USA 91:10350–10354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blanc J-F, Lalanne C, Plomion C, Schmitter J-M, Bathany K, Gion J-M, Bioulac-Sage P, Balabaud C, Bonneu M, Rosenbaum J (2005) Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C. Proteomics 5:3778–3789

    Article  PubMed  CAS  Google Scholar 

  • Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16

    Article  PubMed  Google Scholar 

  • Callegari E, Elamin BK, Sabbioni S, Gramantieri L, Negrini M (2013) Role of microRNAs in hepatocellular carcinoma: a clinical perspective. Onco Targets Ther 6:1167–1178

    PubMed  PubMed Central  Google Scholar 

  • Cha MY, Kim CM, Park YM, Ryu WS (2004) Hepatitis B virus X protein is essential for the activation of Wnt/betacatenin signaling in hepatoma cells. Hepatology 39:1683–1693

    Article  PubMed  CAS  Google Scholar 

  • Chirillo P, Falco M, Puri PL, Artini M, Balsano C, Levrero M, Natoli G (1996) Hepatitis B virus pX activates NFkappaB-dependent transcription through a Raf-independent pathway. J Virol 70:641–646

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choia JK, Choi JY, Kim DG, Choi DW, Kim BY, Lee KH, Yeom Y, Yoo HS, Yoo OJ, Kim S (2004) Integrative analysis of multiple gene expression profiles applied to liver cancer study. FEBS Lett 565:93–100

    Article  Google Scholar 

  • Curran T (1991) Fos and June: intermediary transcription factors. In: Cohen P, Foulkes JG (eds) The hormonal control of gene transcription. Elsevier, New York, pp 295–308

    Chapter  Google Scholar 

  • Dragani TA (2010) Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol 52:252–257

    Article  PubMed  CAS  Google Scholar 

  • Elchuri S, Naeemuddin M, Sharpe O, Robinson WH, Huang TT (2007) Identification of biomarkers associated with the development of hepatocellular carcinoma in CuZn superoxide dismutase deficient mice. Proteomics 7:2121–2129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    Article  PubMed  CAS  Google Scholar 

  • Fernando H, Wiktorowicz JE, Soman KV, Kaphalia BS, Khan MF, Ansari GAS (2013) Liver proteomics in progressive alcoholic steatosis. Toxicol Appl Pharmacol 266:470–480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Florese RH, Nagano-Fujii M, Iwanaga Y, Hidajat R, Hotta H (2002) Inhibition of protein synthesis by the nonstructural proteins NS4A and NS4B of hepatitis C virus. Virus Res 90:119–131

    Article  PubMed  CAS  Google Scholar 

  • Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J (2005) Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 41:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Graveel CR, Jatkoe T, Madore SJ, Holt AL, Farnham PJ (2001) Expression profiling and identification of novel genes in hepatocellular carcinomas. Oncogene 20:2704–2712

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Yamaguchi M (2001) Regulatory role of endogenous regucalcin in the enhancement of nuclear deoxyribonucleic acid synthesis with proliferation of cloned rat hepatoma cells (H4-II-E). J Cell Biochem 82:704–711

    Article  PubMed  CAS  Google Scholar 

  • Isogai M, Shimokawa N, Yamaguchi M (1994a) Hepatic calcium-binding protein regucalcin is released into the serum of rats administered orally carbon tetrachloride. Mol Cell Biochem 131:174–179

    Article  Google Scholar 

  • Isogai M, Oishi K, Yamaguchi M (1994b) Serum release of hepatic calcium-binding protein regucalcin by liver injury with galactosamine administration in rats. Mol Cell Biochem 136:85–90

    Article  PubMed  CAS  Google Scholar 

  • Isogai M, Oishi K, Shimokawa N, Yamaguchi M (1994c) Expression of hepatic calcium-binding protein regucalcin mRNA is decreased by phenobarbital administration in rats. Mol Cell Biochem 141:15–19

    Article  PubMed  CAS  Google Scholar 

  • Isogai M, Kurota H, Yamaguchi M (1997) Hepatic calcium-binding protein regucalcin concentration is decreased by streptozotocin-diabetic state and ethanol ingestion in rats. Mol Cell Biochem 168:67–72

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Center MM, DeSantis C, Ward EM (2005) Global patterns of cancer incidence and mortality rates and Trends. Cancer Epidemiol Biomark Prev 19:1893–1907

    Article  Google Scholar 

  • Laurentino SS, Correia S, Cavaco JE, Oliveira PF, de Sousa M, Barros A, Socorro S (2012) Regucalcin, a calcium-binding protein with a role in male reproduction. Mol Hum Reprod 18:161–170

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Yun Y (1998) HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 273:25510–25515

    Article  PubMed  CAS  Google Scholar 

  • Li C, Xiao Z, Chen Z, Zhang X, Li J, Wu X, Li X, Yi H, Li M, Zhu G, Liang S (2006) Proteome analysis of human lung squamous carcinoma. Proteomics 6:547–558

    Article  PubMed  CAS  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    Article  PubMed  CAS  Google Scholar 

  • Maia C, Santos C, Schmitt F, Socorro S (2009) Regucalcin is under-expressed in human breast and prostate cancers: effect of sex steroid hormones. J Cell Biochem 107:667–676

    Article  PubMed  CAS  Google Scholar 

  • Makino R, Yamaguchi M (1996) Expression of calcium-binding protein regucalcin mRNA in hepatoma cells. Mol Cell Biochem 155:85–90

    Article  PubMed  CAS  Google Scholar 

  • Meijer L, Borgne A, Mulner O, Chhong JP, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  PubMed  CAS  Google Scholar 

  • Misawa H, Yamaguchi M (2000) Transcript heterogeneity of the human gene for Ca2+-binding protein regucalcin. Int J Mol Med 5:283–287

    PubMed  CAS  Google Scholar 

  • Misawa H, Inagaki S, Yamaguchi M (2001) Suppression of cell proliferation and deoxyribonucleic acid synthesis in cloned rat hepatoma H4-II-E cells overexpressing regucalcin. J Cell Biochem 84:143–149

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Yamaguchi M (2014) Regucalcin gene expression is suppressed in various human tumor tissues: implication with alternatively spliced variants. Int J Mol Med 34:1141–1146

  • Murata T, Shinya N, Yamaguchi M (1997) Expression of calcium-binding protein regucalcin mRNA in the cloned human hepatoma cells (HepG2): stimulation by insulin. Mol Cell Biochem 175:163–168

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yamaguchi M (2008) Nuclear localization of regucalcin is enhanced in culture with protein kinase C activation in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 21:605–610

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Sawada N, Yamaguchi M (2005) Overexpression of regucalcin suppresses cell proliferation of cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 16:637–643

    PubMed  CAS  Google Scholar 

  • Nakajima M, Murata T, Yamaguchi M (1999) Expression of calcium-binding protein regucalcin mRNA in the cloned rat hepatoma cells (H4II-E) is stimulated through Ca2+ signaling factors: involvement of protein kinase C. Mol Cell Biochem 198:101–107

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Utsunomiya T, Mimori K, Tanaka F, Haraguchi N, Inoue H, Murayama S, Mori M (2006) Differential gene expression profiles of radioresistant pancreatic cancer cell lines established by fractionated irradiation. Int J Oncol 28:705–713

    PubMed  CAS  Google Scholar 

  • Omura M, Yamaguchi M (1999) Regulation of protein phosphatase activity by regucalcin localization in rat liver nuclei. J Cell Biochem 75:437–445

    Article  PubMed  CAS  Google Scholar 

  • Padhya KT, Marrero JA, Singal AG (2010) Recent advances in the treatment of hepatocellular carcinoma. Curr Opin Gastroenterol 26:189–195

    Article  Google Scholar 

  • Purohit V, Rapaka R, Kwon OS, Song BJ (2013) Roles of alcohol and tobacco exposure in the development of hepatocellular carcinoma. Life Sci 92:3–9

    Article  PubMed  CAS  Google Scholar 

  • Roy L, LaBoissière S, Abdou E, Thibault G, Hamel N, Taheri M, Boismenu D, Lanoix J, Kearney RE, Paiement J (2010) Proteomic analysis of the transitional endoplasmic reticulum in hepatocellular carcinoma: an organelle perspective on cancer. Biochim Biophys Acta 1804:1869–1881

    Article  PubMed  CAS  Google Scholar 

  • Sar P, Bhargava DK, Sengupta D, Rath B, Chaudhary S, Mishra SK (2012) In human breast cancer cells TRβ competes with ERα for altering BCl2/Bax ratio through SMP30-mediated p53 induction. J Cancer Sci Ther 4(8). doi:10.4172/1948-5956.1000146

  • Sarker D, Molife R, Evans TR, Hardie M, Marriott C, Butzberger-Zimmerli P, Morrison R, Fox JA, Heise C, Louie S, Aziz N, Garzon F, Michelson G, Judson IR, Jadayel D, Braendle E, de Bono JS (2008) A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res 14:2075–2081

    Article  PubMed  CAS  Google Scholar 

  • Schröder PC, Segura V, Riezu JI, Sangro B, Mato JM, Prieto J, Santamaría E, Corrales FJ (2011) A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma. Funct Integr Genomics 11:419–429

    Article  PubMed  Google Scholar 

  • Shimokawa N, Matsuda Y, Yamaguchi M (1995) Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 151:157–163

    Article  PubMed  CAS  Google Scholar 

  • Shin JW, Chung Y-H (2013) Molecular targeted therapy for hepatocellular carcinoma: current and future. World J Gatroenterol 19:6144–6155

    Article  CAS  Google Scholar 

  • Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weightly connection. Hepatology 51:1820–1832

    Article  PubMed  Google Scholar 

  • Suzuki S, Asamoto M, Tsujimura K, Shirai T (2004) Specific differences in gene expression profile revealed by cDNA microarray analysis of glutathione S-transferase placental form (GST-P) immunohistochemically positive rat liver foci and surrounding tissue. Carcinogenesis 25:439–443

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2000) Suppressive effect of endogenous regucalcin on the enhancement of protein synthesis and aminoacyl-tRNA synthetase activity in regenerating rat liver. Int J Mol Med 6:295–299

    PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2002a) Suppressive role of endogenousregucalcin in the enhancement of deoxyribonucleic acid synthesis activity in the nucleus of regenerating rat liver. J Cell Biochem 85:516–522

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2002b) Role of endogenous regucalcin in nuclear regulation of regenerating rat liver: suppression of the enhanced ribonucleic acid synthesis activity. J Cell Biochem 87:450–457

    Article  PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Yamaguchi M (2004) Role of regucalcin in liver nuclear function: binding of regucalcin to nuclear protein or DNA and modulation of tumor-related gene expression. Int J Mol Med 14:277–281

    PubMed  CAS  Google Scholar 

  • Tsurusaki Y, Misawa H, Yamaguchi M (2000) Translocation of regucalcin to rat liver nucleus: involvement of nuclear protein kinase and protein phosphatase regulation. Int J Mol Med 6:655–660

    PubMed  CAS  Google Scholar 

  • Twu JS, Lai MY, Chen DS, Robinson WS (1993) Activation of protooncogene c-jun by the X protein of hepatitis B virus. Virology 192:346–350

    Article  PubMed  CAS  Google Scholar 

  • Vaz CV, Maia CJ, Marques R, Gomes IM, Correia S, Alves MG, Cavaco JE, Oliveira PF, Socorro S (2014) Regucalcin is an androgen-target gene in the rat prostate modulating cell-cycle and apoptotic pathways. Prostate 74:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a Multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Wu HC, Santella R (2012) The role of aflatoxins in hepatocellular carcinoma. Hepat Mon 12:e7238

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function (review). Int J Mol Med 15:371–389

    PubMed  CAS  Google Scholar 

  • Yamaguchi M (2010) Novel protein RGPR-p117: its role as the regucalcin gene transcription factor. Mol Cell Biochem 327:53–63

    Article  Google Scholar 

  • Yamaguchi M (2011a) Regucalcin and cell regulation: role as a supressor in cell signaling. Mol Cell Biochem 353:101–137

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2011b) The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 346:147–171

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2013a) Role of regucalcin in cell nuclear regulation: involvement as a transcriptional factor. Cell Tissue Res 354:331–342

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2013b) Suppressive role of regucalcin in liver cell proliferation: involvement in carcinogenesis. Cell Prolif 46:243–253

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M (2013c) The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways. Apoptosis 18:1145–1153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamaguchi M, Daimon Y (2005) Overexpression of regucalcin suppresses cell proliferation in cloned rat hepatoma H4-II-E cells: involvement of intracellular signaling factors and cell cycle-related genes. J Cell Biochem 95:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kanayama Y (1995) Enhanced expression of calcium-binding protein regucalcin mRNA in regenerating rat liver. J Cell Biochem 57:185–190

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kanayama Y (1996) Calcium-binding protein regucalcin inhibits deoxyribonucleic acid synthesis in the nuclei of regenerating rat liver. Mol Cell Biochem 162:121–126

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Mori S (1990) Effect of calcium-binding protein regucalcin on hepatic protein synthesis: inhibition of aminoacyl-tRNA synthetase activity. Mol Cell Biochem 99:25–32

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Sakurai T (1991) Inhibitory effect of calcium-binding protein regucalcin on Ca2+-activated DNA fragmentation in rat liver nuclei. FEBS Lett 279:281–284

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Ueoka S (1997) Inhibitory effect of calcium-binding protein regucalcin on ribonucleic acid synthesis in isolated rat liver nuclei. Mol Cell Biochem 173:169–175

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka T, Kodama T, Doi T (2002) Subcellular localization of HCV core protein regulates its ability for p53 activation and p21 suppression. Biochem Biophys Res Commun 294:528–534

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Dong Y, Zhao H, Brooks JD, Hawthorn L, Nowak N, Marshall JR, Gao AC, Ip C (2005) Microarray data mining for potential Selenium targets in chemoprevention of prostate cancer. Cancer Genomics Proteomics 2:97–114

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou S-F, Mo F-R, Bin Y-H, Hou G-Q, Xie X-X, Luo G-R (2011) Serum immunoreactivity of SMP30 and its tissues expression in hepatocellular carcinoma. Clin Biochem 44:331–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Regucalcin studies of the author were supported by a Grant-in-Aid for Scientific Research (C) Nos. 63571053, 02671006, 04671362, 06672193, 08672522, 10672048, 13672292 and 17590063 from the Ministry of Education, Science, Sports and Culture, Japan, and were also awarded by the Bounty of Encouragement Foundation in Pharmaceutical Research and the Bounty of the Yamanouchi Foundation for Research on Metabolic Disorders, Japan. This study was also supported by the Foundation for Biomedical Research on Regucalcin.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, M. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy. J Cancer Res Clin Oncol 141, 1333–1341 (2015). https://doi.org/10.1007/s00432-014-1831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1831-z

Keywords

Navigation