Journal of Cancer Research and Clinical Oncology

, Volume 140, Issue 12, pp 2065–2075 | Cite as

Synergic effects of artemisinin and resveratrol in cancer cells

  • Peichun Li
  • Sen Yang
  • Mengmeng Dou
  • Youran Chen
  • Jie Zhang
  • Xiaoyan Zhao
Original Article – Cancer Research

Abstract

Purpose

The aim of this study was to investigate whether resveratrol (Res) combined with artemisinin (ART) possess synergistic effect on different cancer cells.

Materials and methods

The viability of HepG2 and HeLa cells treated with ART and Res was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Combination index (CI) analysis and isobologram were used to assess the synergistic effect of ART and Res in different ratios. Wound-healing assay was used to investigate the migration rate. AO staining and fluorescent microscopy measurements were performed to detect the cell apoptosis. Reactive oxygen species (ROS) was measured with 2′7′-dichlorofluorescein diacetate (DCFH-DA).

Results

MTT assay indicated that ART and Res inhibited the growth of HeLa and HepG2 cells in a dose-dependent manner. The combination of ART and Res exhibited the strongest anticancer effect at the ratio of 1:2 (ART to Res). The combination of the two drugs also markedly reduced the ability of cell migration. Apoptosis analysis showed that combination of ART and Res significantly increased the apoptosis and necrosis rather than use singly. Additionally, ROS levels were elevated by combining ART with Res.

Conclusions

Taken together, the present study suggested that ART and Res possessed the synergistic anti-tumor effect. ART in combination with Res could be an effective therapeutic strategy for cancer.

Keywords

Artemisinin Resveratrol Synergistic effect Migration Apoptosis Reactive oxygen species 

References

  1. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24(5A):2783–2840PubMedGoogle Scholar
  2. Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (review). Int J Oncol 23(1):17–28PubMedGoogle Scholar
  3. Baxevanis CN, Perez SA, Papamichail M (2009) Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 58(3):317–324PubMedCrossRefGoogle Scholar
  4. Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A, Schuler G (2005) Artesunate in the treatment of metastatic uveal melanoma-first experiences. Oncol Rep 14(6):1599–1603PubMedGoogle Scholar
  5. Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM, Oberley TD et al (2000) Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 89(1):123–134PubMedCrossRefGoogle Scholar
  6. Cakir Z, Saydam G, Sahin F et al (2011) The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60 acute myeloid leukemia cells. J Cancer Res Clin Oncol 137(2):279–286PubMedCrossRefGoogle Scholar
  7. Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin–integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126(2):393–401PubMedCrossRefGoogle Scholar
  8. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681PubMedCrossRefGoogle Scholar
  9. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  10. Fatemi MH, Izadiyan P (2011) Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere 84(5):553–563PubMedCrossRefGoogle Scholar
  11. Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:e32PubMedCrossRefGoogle Scholar
  12. Frazzi R, Valli R, Tamagnini I, Casali B, Latruffe N, Merli F (2013) Resveratrol-mediated apoptosis of hodgkin lymphoma cells involves SIRT1 inhibition and FOXO3a hyperacetylation. Int J Cancer 132(5):1013–1021PubMedCrossRefGoogle Scholar
  13. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14(17):5519–5530PubMedCrossRefGoogle Scholar
  14. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Pezzuto JM et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220PubMedCrossRefGoogle Scholar
  15. Khan MA, Chen HC, Wan XX, Tania, M, Xu AH, Chen FZ, Zhang DZ (2013) Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells, 1–7Google Scholar
  16. Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T (2009) Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res 29(10):3807–3810PubMedGoogle Scholar
  17. Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31(1):230–246PubMedCrossRefGoogle Scholar
  18. Leite M, Quinta-Costa M, Leite PS, Guimarães JE (1999) Critical evaluation of techniques to detect and measure cell death–study in a model of UV radiation of the leukaemic cell line HL60. Anal Cell Pathol 19(3):139–151PubMedGoogle Scholar
  19. Li PC, Lam E, Roos WP, Zdzienicka MZ, Kaina B, Efferth T (2008) Artesunate derived from traditional Chinese medicine induces DNA damage and repair. Cancer Res 68(11):4347–4351PubMedCrossRefGoogle Scholar
  20. Liu WM, Gravett AM, Dalgleish AG (2011) The antimalarial agent artesunate possesses anticancer properties that can be enhanced by combination strategies. Int J Cancer 128(6):1471–1480PubMedCrossRefGoogle Scholar
  21. Liu P, Liang H, Xia Q, Li P, Kong H, Lei P, Tu Z et al (2013) Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin Transl Oncol pp 1–6Google Scholar
  22. May J, Cuatrecasas P et al (1985) Transferrin receptor: its biological significance. J Membr Biol 88(3):205–215PubMedCrossRefGoogle Scholar
  23. Muqbil I, Beck WJ, Bao F, Sarkar BH, Mohammad FM, Hadi RM et al (2012) Old wine in a new bottle: the Warburg effect and anticancer mechanisms of resveratrol. Curr Pharm Des 18(12):1645–1654PubMedCrossRefGoogle Scholar
  24. Nakase I, Gallis B, Takatani-Nakase T, Oh S, Lacoste E, Singh NP et al (2009) Ransferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett 274(2):290–298PubMedCrossRefGoogle Scholar
  25. Notas G, Nifli AP, Kampa M, Vercauteren J, Kouroumalis E, Castanas E (2006) Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation. Biochimica et Biophysica Acta (BBA)-General Subjects 1760(11):1657–1666Google Scholar
  26. Rasheed SA, Efferth T, Asangani IA, Allgayer H (2010) First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 127(6):1475–1485PubMedCrossRefGoogle Scholar
  27. Riganti C, Doublier S, Costamagna C, Aldieri E, Pescarmona G, Ghigo D, Bosia A (2008) Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human colon cancer HT29 cells. Mol Pharmacol 74(2):476–484PubMedCrossRefGoogle Scholar
  28. Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298(3):865–872PubMedGoogle Scholar
  29. Tan WF, Shen F, Luo XJ, Su CQ et al (2011) Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine 18(2):158–162Google Scholar
  30. Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL (2012) Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 23(4):370–379PubMedCrossRefGoogle Scholar
  31. Trung LQ, Espinoza JL, Takami A, Nakao S (2013) Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS ONE 8(1):e55183CrossRefGoogle Scholar
  32. Vishchuk OS, Ermakova SP, Zvyagintseva TN (2013) The effect of sulfated (1 → 3)-α-l-fucan from the brown alga Saccharina cichorioides miyabe on resveratrol-induced apoptosis in colon carcinoma cells. Marine Drugs 11(1):194–212PubMedCentralPubMedCrossRefGoogle Scholar
  33. Wang Z, Hu W, Zhang JL, Wu XH, Zhou HJ (2012) Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Biol 2:103–112CrossRefGoogle Scholar
  34. Willoughby JA, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284(4):2203–2213PubMedCentralPubMedCrossRefGoogle Scholar
  35. World Health Organization (2006) Guidelines for the treatment of malaria. World Health OrganizationGoogle Scholar
  36. Xu H, He Y, Yang X, Liang L, Zhan Z, Ye Y, Sun L et al (2007) Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 46(6):920–926PubMedCrossRefGoogle Scholar
  37. Xu Q, Li ZX, Peng HQ, Sun ZW, Cheng RL, Ye ZM, Li WX (2011) Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. J Zhejiang Univ Sci B 12(4):247–255PubMedCentralPubMedCrossRefGoogle Scholar
  38. Yang L, Tian W et al (2014) Resveratrol plays dual roles in pancreatic cancer cells[J]. J Cancer Res Clin Oncol 140(5):749–755PubMedCrossRefGoogle Scholar
  39. Zhang J, Tong N, Chen Y, Li P, Yang S, Zhao X (2013) Resveratrol protects against vinorelbine-induced vascular endothelial cell injury. Toxicol Mech Methods 23(9):665–671PubMedCrossRefGoogle Scholar
  40. Zhao L, Wientjes MG, Au JL (2004) Evaluation of combination chemotherapy integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res 10(23):7994–8004PubMedCrossRefGoogle Scholar
  41. Zhao XY, Li GY, Liu Y, Chai LM, Chen JX, Zhang Y, Yang BF (2008) Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. Br J Pharmacol 154(1):105–113PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zhou S, Guo Y, Wang X, Wang PJ, Zhang B (2014) Effects of resveratrol on oral squamous cell carcinoma (OSCC) cells in vitro. J Cancer Res Clin Oncol 140:371–374CrossRefGoogle Scholar
  43. Zhu HL, Huang X (2011) Resveratrol and its analogues: promising antitumor agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 11(5):479–490Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peichun Li
    • 1
  • Sen Yang
    • 1
  • Mengmeng Dou
    • 1
  • Youran Chen
    • 1
  • Jie Zhang
    • 2
  • Xiaoyan Zhao
    • 1
  1. 1.College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
  2. 2.Department of NeurologyThe Ninth People’s Hospital of ChongqingChongqingChina

Personalised recommendations