Skip to main content

Advertisement

Log in

High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next?

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

High-dose methotrexate (HD-MTX) is a cornerstone antineoplastic drug in most treatment protocols of pediatric acute lymphoblastic leukemia (ALL). Among the membrane efflux transporters of MTX, the human breast cancer resistant protein is the second member of the G subfamily of ATP-binding cassette (ABC) efflux pump (ABCG2). A single-nucleotide polymorphism (SNP) in ABCG2, the exchange of C to A at position 421, represents 13 % in the Middle Eastern population. We studied the effect of this SNP on the plasma levels of HD-MTX in Egyptian pediatric ALL.

Methods

Two hundred ALL patients were recruited from Children’s Cancer Hospital Egypt-57357, and all were treated according to the St Jude Total XV protocol. Determination of plasma MTX levels was done at 23, 42 and 68 h. Genotyping of C421A of ABCG2 was done by polymerase chain reaction-restriction fragment length polymorphism.

Results

We found 14.5 % of the variant allele of the ABCG2 C421A SNP. The statistical association between ABCG2 421C>A SNP and the cutoff toxic plasma level of 24 h HD-MTX infusion at different time points tested was not statistically significant. There was no statistical significance between steady-state plasma concentration in patients with and without with this SNP.

Conclusion

To date, this is the largest study on Egyptian ALL patients for this SNP. This study shows that there is no effect of ABCG2 421C>A on plasma concentrations of HD-MTX. Replacing candidate gene association studies with genome-wide studies of HD-MTX is now mandatory and is part of our research blueprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott BL (2003) ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol Oncol 21:115–130

    Article  PubMed  Google Scholar 

  • Ackland SP, Schilsky RL (1987) High-dose methotrexate: a critical reappraisal. J Clin Oncol Off J Am Soc Clin Oncol 5:2017–2031

    CAS  Google Scholar 

  • Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD (2001) Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 1520:234–241

    Article  CAS  PubMed  Google Scholar 

  • Benderra Z, Faussat A-M, Sayada L et al (2004) Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res Off J Am Assoc Cancer Res 10:7896–7902

    Article  CAS  Google Scholar 

  • Dawson BD, Trapp R (2000) Basic and clinical biostatistics. Lange Medical Books/McGraw Hil, New York

    Google Scholar 

  • Devita VT, Lawrence TS, Rosenberg SA, DePinto RAWR (2008) Pharmacology of cancer chemotherapy: antimetabolite—methotrexate. In: DeVita VT Jr, Hellman SRS (eds) Principles and practice of oncology, 8th edn. Lippincott Williams & Wilkins, Philadelphia, pp 427–428

    Google Scholar 

  • Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22:7340–7358

    Article  PubMed  Google Scholar 

  • El-Khodary NM, El-Haggar SM, Eid MA, Ebeid EN (2012) Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol (Northwood, London, England) 29:2053–2062

    Article  CAS  Google Scholar 

  • Gervasini G (2009) Polymorphisms in methotrexate pathways: what is clinically relevant, what is not, and what is promising. Curr Drug Metab 10:547–566

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fujimaki C, Tsuboi S et al (2008) Application of fluorescence polarization immunoassay for determination of methotrexate-polyglutamates in rheumatoid arthritis patients. Tohoku J Exp Med 215:95–101

    Article  CAS  PubMed  Google Scholar 

  • Hulot J-S, Villard E, Maguy A et al (2005) A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenet Genomics 15:277–285

    Article  CAS  PubMed  Google Scholar 

  • Igarashi S, Manabe A, Ohara A et al (2005) No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children’s Cancer Study Group L95-14 protocol. J Clin Oncol Off J Am Soc Clin Oncol 23:6489–6498

    Article  CAS  Google Scholar 

  • Imanishi H, Okamura N, Yagi M et al (2007) Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet 52:166–171

    Article  CAS  PubMed  Google Scholar 

  • Keskitalo JE, Zolk O, Fromm MF et al (2009) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86:197–203

    Article  CAS  PubMed  Google Scholar 

  • Lepper ER, Nooter K, Verweij J et al (2005) Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics 6:115–138

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lopez E, Martin-Guerrero I, Ballesteros J et al (2011) Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 57:612–619

    Article  PubMed  Google Scholar 

  • Malaviya AN, Sharma A, Agarwal D et al (2010) Low-dose and high-dose methotrexate are two different drugs in practical terms. Int J Rheum Dis 13:288–293

    Article  PubMed  Google Scholar 

  • Maliepaard M, Scheffer GL, Faneyte IF et al (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–3464

    CAS  PubMed  Google Scholar 

  • Meissner K, Heydrich B, Jedlitschky G et al (2006) The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem Off J Histochem Soc 54:215–221

    Article  CAS  Google Scholar 

  • Metayer C, Milne E, Clavel J et al (2013) The childhood leukemia international consortium. Cancer Epidemiol 37:336–347

    Article  PubMed Central  PubMed  Google Scholar 

  • Mikkelsen TS, Sparreboom A, Cheng C et al (2011) Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol Off J Am Soc Clin Oncol 29:1771–1778

    Article  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ni Z, Bikadi Z, Rosenberg MF, Mao Q (2010) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11:603–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pauley JL, Panetta JC, Crews KR et al (2013) Between-course targeting of methotrexate exposure using pharmacokinetically guided dosage adjustments. Cancer Chemother Pharmacol 72:369–378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pession A, Valsecchi MG, Masera G et al (2005) Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol Off J Am Soc Clin Oncol 23:7161–7167

    Article  CAS  Google Scholar 

  • Pui C-H, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178

    Article  CAS  PubMed  Google Scholar 

  • Pui C-H, Campana D, Pei D et al (2009) Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 360:2730–2741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pui C-H, Mullighan CG, Evans WE, Relling MV (2012) Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 120:1165–1174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rau T, Erney B, Göres R et al (2006) High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther 80:468–476

    Article  CAS  PubMed  Google Scholar 

  • Robey RW, Polgar O, Deeken J et al (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26:39–57

    Article  CAS  PubMed  Google Scholar 

  • Schmiegelow K (2009) Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol 146:489–503

    Article  CAS  PubMed  Google Scholar 

  • Silverman LB, Gelber RD, Dalton VK et al (2001) Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 97:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Simon N, Marsot A, Villard E, Choquet S, Khe HX, Zahr N, Lechat P, Leblond V, Hulot JS (2013) Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. Pharmacogenomics J 13(6):507–513

    Google Scholar 

  • Sissung TM, Baum CE, Kirkland CT et al (2010) Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol 44:152–167

    Article  CAS  PubMed  Google Scholar 

  • Stamp LK, O’Donnell JL, Chapman PT et al (2009) Determinants of red blood cell methotrexate polyglutamate concentrations in rheumatoid arthritis patients receiving long-term methotrexate treatment. Arthritis Rheum 60:2248–2256

    Article  CAS  PubMed  Google Scholar 

  • Tantawy AAG, El-Bostany EA, Adly AAM et al (2010) Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinolysis Int J Haemost Thromb 21:28–34

    Article  CAS  Google Scholar 

  • Vlaming MLH, van Esch A, Pala Z et al (2009) Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol Cancer Ther 8:3350–3359

    Article  CAS  PubMed  Google Scholar 

  • Wilson CS, Davidson GS, Martin SB et al (2006) Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 108:685–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodward OM, Köttgen A, Coresh J et al (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 106:10338–10342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zamber CP, Lamba JK, Yasuda K et al (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13:19–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mobinil award from Mobinil company as a support to Children’s Cancer Hospital Egypt-57357 (CCHE-57357) funded this study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafaa M. Rashed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Mesallamy, H.O., Rashed, W.M., Hamdy, N.M. et al. High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next?. J Cancer Res Clin Oncol 140, 1359–1365 (2014). https://doi.org/10.1007/s00432-014-1670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1670-y

Keywords

Navigation