Skip to main content

Temsirolimus and chloroquine cooperatively exhibit a potent antitumor effect against colorectal cancer cells

Abstract

Purpose

Temsirolimus (TEM) is a novel, water-soluble mammalian target of rapamycin (mTOR) inhibitor that has shown activity against a wide range of cancers in preclinical models, but its efficacy against colorectal cancer (CRC) has not been fully explored.

Methods

We evaluated the antitumor effect of TEM in CRC cell lines (CaR-1, HT-29, Colon26) in vitro and in vivo. In vitro, cell growth inhibition was assessed using a MTS assay. Apoptosis induction and cell cycle effects were measured using flow cytometry. Modulation of mTOR signaling was measured using immunoblotting. Antitumor activity as a single agent was evaluated in a mouse subcutaneous tumor model of CRC. The effects of adding chloroquine, an autophagy inhibitor, to TEM were evaluated in vitro and in vivo.

Results

In vitro, TEM was effective in inhibiting the growth of two CRC cell lines with highly activated AKT, possibly through the induction of G1 cell cycle arrest via a reduction in cyclin D1 expression, whereas TEM reduced HIF-1α and VEGF in all three cell lines. In a mouse subcutaneous tumor model, TEM inhibited the growth of tumors in all cell lines, not only through direct growth inhibition but also via an anti-angiogenic effect. We also explored the effects of adding chloroquine, an autophagy inhibitor, to TEM. Chloroquine significantly potentiated the antitumor activity of TEM in vitro and in vivo. Moreover, the combination therapy triggered enhanced apoptosis, which corresponded to an increased Bax/Bcl-2 ratio.

Conclusions

Based on these data, we propose TEM with or without chloroquine as a new treatment option for CRC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altomare I, Bendell JC, Bullock KE, Uronis HE, Morse MA, Hsu SD, Zafar SY, Blobe GC, Pang H, Honeycutt W, Sutton L, Hurwitz HI (2011) A phase II trial of bevacizumab plus everolimus for patients with refractory metastatic colorectal cancer. Oncologist 16:1131–1137. doi:10.1634/theoncologist.2011-0078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirrò E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119:1109–1123. doi:10.1172/JCI35660

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bursch W, Ellinger A, Kienzl H, Török L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607

    CAS  Article  PubMed  Google Scholar 

  • Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Carew JS, Medina EC, Esquivel JA 2nd, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, Giles FJ, Nawrocki ST (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459. doi:10.1111/j.1582-4934.2009.00832.x

    CAS  Article  PubMed  Google Scholar 

  • Carew JS, Kelly KR, Nawrocki ST (2011a) Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 6:17–27. doi:10.1007/s11523-011-0167-8

    Article  PubMed  Google Scholar 

  • Carew JS, Espitia CM, Esquivel JA 2nd, Mahalingam D, Kelly KR, Reddy G, Giles FJ, Nawrocki ST (2011b) Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 286:6602–6613. doi:10.1074/jbc.M110.151324

    CAS  Article  PubMed  Google Scholar 

  • Chau I, Cunningham D (2009) Treatment in advanced colorectal cancer: what, when and how? Br J Cancer 100:1704–1719. doi:10.1038/sj.bjc.6605061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Chang PC, Chang MC, Lin YF, Lee HM (2005) Chloroquine induces the expression of inducible nitric oxide synthase in C6 glioma cells. Pharmacol Res 51:329–336

    CAS  Article  PubMed  Google Scholar 

  • Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, Milella M (2006) Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554

    Article  PubMed  Google Scholar 

  • Ding ZB, Hui B, Shi YH, Zhou J, Peng YF, Gu CY, Yang H, Shi GM, Ke AW, Wang XY, Song K, Dai Z, Shen YH, Fan J (2011) Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin Cancer Res 17:6229–6238. doi:10.1158/1078-0432.CCR-11-0816

    CAS  Article  PubMed  Google Scholar 

  • Fan C, Wang W, Zhao B, Zhang S, Miao J (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 14:3218–3222

    CAS  Article  PubMed  Google Scholar 

  • Guba M, Koehl GE, Neppl E, Doenecke A, Steinbauer M, Schlitt HJ, Jauch KW, Geissler EK (2005) Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. Transpl Int 18:89–94

    CAS  Article  PubMed  Google Scholar 

  • Guo XL, Li D, Sun K, Wang J, Liu Y, Song JR, Zhao QD, Zhang SS, Deng WJ, Zhao X, Wu MC, Wei LX (2013) Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med (Berl) 91:473–483. doi:10.1007/s00109-012-0966-0

    CAS  Article  Google Scholar 

  • Hayun R, Okun E, Berrebi A, Shvidel L, Bassous L, Sredni B, Nir U (2009) Rapamycin and curcumin induce apoptosis in primary resting B chronic lymphocytic leukemia cells. Leuk Lymphoma 50:625–632. doi:10.1080/10428190902789181

    CAS  Article  PubMed  Google Scholar 

  • Hu YL, Jahangiri A, De Lay M, Aghi MK (2012a) Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy 8:979–981. doi:10.4161/auto.20232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, Aghi MK (2012b) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783. doi:10.1158/0008-5472.CAN-11-3831

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  • Jiang PD, Zhao YL, Shi W, Deng XQ, Xie G, Mao YQ, Li ZG, Zheng YZ, Yang SY, Wei YQ (2008) Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol Biochem 22:431–440. doi:10.1159/000185488

    CAS  Article  PubMed  Google Scholar 

  • Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108

    CAS  PubMed  Google Scholar 

  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    CAS  Article  PubMed  Google Scholar 

  • Kapoor A, Figlin RA (2009) Targeted inhibition of mammalian target of rapamycin for the treatment of advanced renal cell carcinoma. Cancer 115:3618–3630. doi:10.1002/cncr.24409

    CAS  Article  PubMed  Google Scholar 

  • Kim DD, Eng C (2012) The promise of mTOR inhibitors in the treatment of colorectal cancer. Expert Opin Investig Drugs 21:1775–1788. doi:10.1517/13543784.2012.721353

    CAS  Article  PubMed  Google Scholar 

  • Lagneaux L, Delforge A, Dejeneffe M, Massy M, Bernier M, Bron D (2002) Hydroxychloroquine-induced apoptosis of chronic lymphocytic leukemia involves activation of caspase-3 and modulation of Bcl-2/bax/ratio. Leuk Lymphoma 43:1087–1095

    CAS  Article  PubMed  Google Scholar 

  • Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622. doi:10.1158/1078-0432.CCR-08-2057

    CAS  Article  PubMed  Google Scholar 

  • Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR (2007a) RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 13:4261–4270

    CAS  Article  PubMed  Google Scholar 

  • Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR (2007b) b) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413

    CAS  Article  PubMed  Google Scholar 

  • Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, Jauch KW, Guba M, Bruns CJ (2008) Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res 14:892–900. doi:10.1158/1078-0432.CCR-07-0955

    CAS  Article  PubMed  Google Scholar 

  • Miyake N, Chikumi H, Takata M, Nakamoto M, Igishi T, Shimizu E (2012) Rapamycin induces p53-independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells. Oncol Rep 28:848–854. doi:10.3892/or2012.1855

    CAS  PubMed  Google Scholar 

  • Nguyen SA, Walker D, Gillespie MB, Gutkind JS, Day TA (2012) mTOR inhibitors and its role in the treatment of head and neck squamous cell carcinoma. Curr Treat Options Oncol 13:71–81. doi:10.1007/s11864-011-0180-2

    Article  PubMed  Google Scholar 

  • Nozawa H, Watanabe T, Nagawa H (2007) Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett 251:105–113

    CAS  Article  PubMed  Google Scholar 

  • Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    CAS  PubMed  Google Scholar 

  • Park BC, Park SH, Paek SH, Park SY, Kwak MK, Choi HG, Yong CS, Yoo BK, Kim JA (2008) Chloroquine-induced nitric oxide increase and cell death is dependent on cellular GSH depletion in A172 human glioblastoma cells. Toxicol Lett 178:52–60. doi:10.1016/j.toxlet.2008.02.003

    CAS  Article  PubMed  Google Scholar 

  • Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA, Shiojima I, Nagy JA, Lin MI, Walsh K, Dvorak AM, Briscoe DM, Neeman M, Sessa WC, Dvorak HF, Benjamin LE (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10:159–170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rao R, Balusu R, Fiskus W, Mudunuru U, Venkannagari S, Chauhan L, Smith JE, Hembruff SL, Ha K, Atadja P, Bhalla KN (2012) Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther 11:973–983. doi:10.1158/1535-7163.MCT-11-0979

    CAS  Article  PubMed  Google Scholar 

  • Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF (2007) Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol 46:840–848

    CAS  Article  PubMed  Google Scholar 

  • Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–18035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE, Lu B (2005) Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24:5414–5422

    CAS  Article  PubMed  Google Scholar 

  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65:7052–7058

    CAS  Article  PubMed  Google Scholar 

  • Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346

    CAS  PubMed  Google Scholar 

  • Van Cutsem E, Nordlinger B, Cervantes A (2010) Advanced colorectal cancer: esmo clinical practice guidelines for treatment. Ann Oncol 21:v93–v97. doi:10.1093/annonc/mdq222

    Article  PubMed  Google Scholar 

  • Wan X, Shen N, Mendoza A, Khanna C, Helman LJ (2006) CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 8:394–401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JF, Liu JJ, Lu MQ, Cai CJ, Yang Y, Li H, Xu C, Chen GH (2007) Rapamycin inhibits cell growth by induction of apoptosis on hepatocellular carcinoma cells in vitro. Transpl Immunol 17:162–168

    CAS  Article  PubMed  Google Scholar 

  • Zheng Y, Zhao YL, Deng X, Yang S, Mao Y, Li Z, Jiang P, Zhao X, Wei Y (2009) Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest 27:286–292. doi:10.1080/07357900802427927

    CAS  Article  PubMed  Google Scholar 

  • Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29:451–462. doi:10.1038/onc.2009.343

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Kaoru Amitani for her excellent technical assistance.

Conflict of interest

Temsirolimus for the in vivo experiments was provided by Pfizer Inc. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kaneko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaneko, M., Nozawa, H., Hiyoshi, M. et al. Temsirolimus and chloroquine cooperatively exhibit a potent antitumor effect against colorectal cancer cells. J Cancer Res Clin Oncol 140, 769–781 (2014). https://doi.org/10.1007/s00432-014-1628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1628-0

Keywords

  • Temsirolimus
  • Chloroquine
  • Colorectal cancer
  • mTOR
  • Autophagy
  • Angiogenesis