Advertisement

Temsirolimus and chloroquine cooperatively exhibit a potent antitumor effect against colorectal cancer cells

  • Manabu KanekoEmail author
  • Hiroaki Nozawa
  • Masaya Hiyoshi
  • Noriko Tada
  • Koji Murono
  • Takako Nirei
  • Shigenobu Emoto
  • Junko Kishikawa
  • Yuuki Iida
  • Eiji Sunami
  • Nelson H. Tsuno
  • Joji Kitayama
  • Koki Takahashi
  • Toshiaki Watanabe
Original Article – Cancer Research

Abstract

Purpose

Temsirolimus (TEM) is a novel, water-soluble mammalian target of rapamycin (mTOR) inhibitor that has shown activity against a wide range of cancers in preclinical models, but its efficacy against colorectal cancer (CRC) has not been fully explored.

Methods

We evaluated the antitumor effect of TEM in CRC cell lines (CaR-1, HT-29, Colon26) in vitro and in vivo. In vitro, cell growth inhibition was assessed using a MTS assay. Apoptosis induction and cell cycle effects were measured using flow cytometry. Modulation of mTOR signaling was measured using immunoblotting. Antitumor activity as a single agent was evaluated in a mouse subcutaneous tumor model of CRC. The effects of adding chloroquine, an autophagy inhibitor, to TEM were evaluated in vitro and in vivo.

Results

In vitro, TEM was effective in inhibiting the growth of two CRC cell lines with highly activated AKT, possibly through the induction of G1 cell cycle arrest via a reduction in cyclin D1 expression, whereas TEM reduced HIF-1α and VEGF in all three cell lines. In a mouse subcutaneous tumor model, TEM inhibited the growth of tumors in all cell lines, not only through direct growth inhibition but also via an anti-angiogenic effect. We also explored the effects of adding chloroquine, an autophagy inhibitor, to TEM. Chloroquine significantly potentiated the antitumor activity of TEM in vitro and in vivo. Moreover, the combination therapy triggered enhanced apoptosis, which corresponded to an increased Bax/Bcl-2 ratio.

Conclusions

Based on these data, we propose TEM with or without chloroquine as a new treatment option for CRC.

Keywords

Temsirolimus Chloroquine Colorectal cancer mTOR Autophagy Angiogenesis 

Notes

Acknowledgments

The authors thank Kaoru Amitani for her excellent technical assistance.

Conflict of interest

Temsirolimus for the in vivo experiments was provided by Pfizer Inc. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

References

  1. Altomare I, Bendell JC, Bullock KE, Uronis HE, Morse MA, Hsu SD, Zafar SY, Blobe GC, Pang H, Honeycutt W, Sutton L, Hurwitz HI (2011) A phase II trial of bevacizumab plus everolimus for patients with refractory metastatic colorectal cancer. Oncologist 16:1131–1137. doi: 10.1634/theoncologist.2011-0078 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, Galavotti S, Young KW, Selmi T, Yacobi R, Van Etten RA, Donato N, Hunter A, Dinsdale D, Tirrò E, Vigneri P, Nicotera P, Dyer MJ, Holyoake T, Salomoni P, Calabretta B (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119:1109–1123. doi: 10.1172/JCI35660 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bursch W, Ellinger A, Kienzl H, Török L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607CrossRefPubMedGoogle Scholar
  5. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carew JS, Medina EC, Esquivel JA 2nd, Mahalingam D, Swords R, Kelly K, Zhang H, Huang P, Mita AC, Mita MM, Giles FJ, Nawrocki ST (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459. doi: 10.1111/j.1582-4934.2009.00832.x CrossRefPubMedGoogle Scholar
  7. Carew JS, Kelly KR, Nawrocki ST (2011a) Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 6:17–27. doi: 10.1007/s11523-011-0167-8 CrossRefPubMedGoogle Scholar
  8. Carew JS, Espitia CM, Esquivel JA 2nd, Mahalingam D, Kelly KR, Reddy G, Giles FJ, Nawrocki ST (2011b) Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 286:6602–6613. doi: 10.1074/jbc.M110.151324 CrossRefPubMedGoogle Scholar
  9. Chau I, Cunningham D (2009) Treatment in advanced colorectal cancer: what, when and how? Br J Cancer 100:1704–1719. doi: 10.1038/sj.bjc.6605061 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen TH, Chang PC, Chang MC, Lin YF, Lee HM (2005) Chloroquine induces the expression of inducible nitric oxide synthase in C6 glioma cells. Pharmacol Res 51:329–336CrossRefPubMedGoogle Scholar
  11. Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G, Milella M (2006) Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–5554CrossRefPubMedGoogle Scholar
  12. Ding ZB, Hui B, Shi YH, Zhou J, Peng YF, Gu CY, Yang H, Shi GM, Ke AW, Wang XY, Song K, Dai Z, Shen YH, Fan J (2011) Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin Cancer Res 17:6229–6238. doi: 10.1158/1078-0432.CCR-11-0816 CrossRefPubMedGoogle Scholar
  13. Fan C, Wang W, Zhao B, Zhang S, Miao J (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 14:3218–3222CrossRefPubMedGoogle Scholar
  14. Guba M, Koehl GE, Neppl E, Doenecke A, Steinbauer M, Schlitt HJ, Jauch KW, Geissler EK (2005) Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. Transpl Int 18:89–94CrossRefPubMedGoogle Scholar
  15. Guo XL, Li D, Sun K, Wang J, Liu Y, Song JR, Zhao QD, Zhang SS, Deng WJ, Zhao X, Wu MC, Wei LX (2013) Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med (Berl) 91:473–483. doi: 10.1007/s00109-012-0966-0 CrossRefGoogle Scholar
  16. Hayun R, Okun E, Berrebi A, Shvidel L, Bassous L, Sredni B, Nir U (2009) Rapamycin and curcumin induce apoptosis in primary resting B chronic lymphocytic leukemia cells. Leuk Lymphoma 50:625–632. doi: 10.1080/10428190902789181 CrossRefPubMedGoogle Scholar
  17. Hu YL, Jahangiri A, De Lay M, Aghi MK (2012a) Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy 8:979–981. doi: 10.4161/auto.20232 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, Aghi MK (2012b) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783. doi: 10.1158/0008-5472.CAN-11-3831 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi: 10.3322/caac.20107 CrossRefPubMedGoogle Scholar
  20. Jiang PD, Zhao YL, Shi W, Deng XQ, Xie G, Mao YQ, Li ZG, Zheng YZ, Yang SY, Wei YQ (2008) Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol Biochem 22:431–440. doi: 10.1159/000185488 CrossRefPubMedGoogle Scholar
  21. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108PubMedGoogle Scholar
  22. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457CrossRefPubMedGoogle Scholar
  23. Kapoor A, Figlin RA (2009) Targeted inhibition of mammalian target of rapamycin for the treatment of advanced renal cell carcinoma. Cancer 115:3618–3630. doi: 10.1002/cncr.24409 CrossRefPubMedGoogle Scholar
  24. Kim DD, Eng C (2012) The promise of mTOR inhibitors in the treatment of colorectal cancer. Expert Opin Investig Drugs 21:1775–1788. doi: 10.1517/13543784.2012.721353 CrossRefPubMedGoogle Scholar
  25. Lagneaux L, Delforge A, Dejeneffe M, Massy M, Bernier M, Bron D (2002) Hydroxychloroquine-induced apoptosis of chronic lymphocytic leukemia involves activation of caspase-3 and modulation of Bcl-2/bax/ratio. Leuk Lymphoma 43:1087–1095CrossRefPubMedGoogle Scholar
  26. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622. doi: 10.1158/1078-0432.CCR-08-2057 CrossRefPubMedGoogle Scholar
  27. Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR (2007a) RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 13:4261–4270CrossRefPubMedGoogle Scholar
  28. Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR (2007b) b) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413CrossRefPubMedGoogle Scholar
  29. Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, Jauch KW, Guba M, Bruns CJ (2008) Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res 14:892–900. doi: 10.1158/1078-0432.CCR-07-0955 CrossRefPubMedGoogle Scholar
  30. Miyake N, Chikumi H, Takata M, Nakamoto M, Igishi T, Shimizu E (2012) Rapamycin induces p53-independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells. Oncol Rep 28:848–854. doi: 10.3892/or2012.1855 PubMedGoogle Scholar
  31. Nguyen SA, Walker D, Gillespie MB, Gutkind JS, Day TA (2012) mTOR inhibitors and its role in the treatment of head and neck squamous cell carcinoma. Curr Treat Options Oncol 13:71–81. doi: 10.1007/s11864-011-0180-2 CrossRefPubMedGoogle Scholar
  32. Nozawa H, Watanabe T, Nagawa H (2007) Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett 251:105–113CrossRefPubMedGoogle Scholar
  33. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444PubMedGoogle Scholar
  34. Park BC, Park SH, Paek SH, Park SY, Kwak MK, Choi HG, Yong CS, Yoo BK, Kim JA (2008) Chloroquine-induced nitric oxide increase and cell death is dependent on cellular GSH depletion in A172 human glioblastoma cells. Toxicol Lett 178:52–60. doi: 10.1016/j.toxlet.2008.02.003 CrossRefPubMedGoogle Scholar
  35. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA, Shiojima I, Nagy JA, Lin MI, Walsh K, Dvorak AM, Briscoe DM, Neeman M, Sessa WC, Dvorak HF, Benjamin LE (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10:159–170CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rao R, Balusu R, Fiskus W, Mudunuru U, Venkannagari S, Chauhan L, Smith JE, Hembruff SL, Ha K, Atadja P, Bhalla KN (2012) Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther 11:973–983. doi: 10.1158/1535-7163.MCT-11-0979 CrossRefPubMedGoogle Scholar
  37. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF (2007) Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol 46:840–848CrossRefPubMedGoogle Scholar
  38. Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–18035CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE, Lu B (2005) Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24:5414–5422CrossRefPubMedGoogle Scholar
  40. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65:7052–7058CrossRefPubMedGoogle Scholar
  41. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346PubMedGoogle Scholar
  42. Van Cutsem E, Nordlinger B, Cervantes A (2010) Advanced colorectal cancer: esmo clinical practice guidelines for treatment. Ann Oncol 21:v93–v97. doi: 10.1093/annonc/mdq222 CrossRefPubMedGoogle Scholar
  43. Wan X, Shen N, Mendoza A, Khanna C, Helman LJ (2006) CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 8:394–401CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang JF, Liu JJ, Lu MQ, Cai CJ, Yang Y, Li H, Xu C, Chen GH (2007) Rapamycin inhibits cell growth by induction of apoptosis on hepatocellular carcinoma cells in vitro. Transpl Immunol 17:162–168CrossRefPubMedGoogle Scholar
  45. Zheng Y, Zhao YL, Deng X, Yang S, Mao Y, Li Z, Jiang P, Zhao X, Wei Y (2009) Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis. Cancer Invest 27:286–292. doi: 10.1080/07357900802427927 CrossRefPubMedGoogle Scholar
  46. Zhu K, Dunner K Jr, McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29:451–462. doi: 10.1038/onc.2009.343 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Manabu Kaneko
    • 1
    Email author
  • Hiroaki Nozawa
    • 1
  • Masaya Hiyoshi
    • 1
  • Noriko Tada
    • 1
  • Koji Murono
    • 1
  • Takako Nirei
    • 1
  • Shigenobu Emoto
    • 1
  • Junko Kishikawa
    • 1
  • Yuuki Iida
    • 1
  • Eiji Sunami
    • 1
  • Nelson H. Tsuno
    • 2
  • Joji Kitayama
    • 1
  • Koki Takahashi
    • 2
  • Toshiaki Watanabe
    • 1
  1. 1.Department of Surgical Oncology, Faculty of MedicineThe University of TokyoBunkyo-kuJapan
  2. 2.Department of Transfusion Medicine, Faculty of MedicineThe University of TokyoBunkyo-kuJapan

Personalised recommendations