Skip to main content

Advertisement

Log in

Synergistic effects of eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on lung cancer in vitro and in vivo

  • Original article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

LKB1 and FUS1 are two kinds of new tumor suppressor genes as well as early-stage genes in lung cancer. Recent studies showed that LKB1 and FUS1 play important roles in lung carcinogenesis process. We hypothesized that combined gene therapy with LKB1 and FUS1 could inhibit lung cancer growth and development synergistically.

Methods

In this study, two kinds of tumor suppressor genes, LKB1 and FUS1, were constructed in an eukaryotic coexpression plasmid pVITRO2, and then, we evaluated the synergistic effects of the two genes on anticancer activity and explored the relevant molecular mechanisms.

Results

We defined coexpression of LKB1 and FUS1 could synergistically inhibited lung cancer cells growth, invasion and migration and induced the cell apoptosis and arrested cell cycle in vitro. Intratumoral administration of liposomes: pVITRO2LKB1FUS1 complex (LPs–pVITRO2LKB1–FUS1) into subcutaneous lung tumor xenograft resulted in more significant inhibition of tumor growth. Furthermore, intravenous injection of LPs–pVITRO2LKB1–FUS1 into mice bearing experimental A549 lung metastasis demonstrated synergistic decrease in the number of metastatic tumor nodules. Finally, combined treatment with LKB1 and FUS1 prolonged overall survival in lung tumor-bearing mice. Further study showed that the synergistic anti-lung cancer effects of coexpression of LKB1 and FUS1 might be related to upregulation of p-p53, p-AMPK and downregulation of p-mTOR, p-FAK, MMPs, NEDD9, VEGF/R and PDGF/R.

Conclusions

Our results suggest that combined therapy with eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes may be a novel and efficient treatment strategy for human lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LKB1:

Liver kinase B1

FUS1:

Tumor suppressor candidate 2

MMP:

Matrix metalloproteinase

NEDD9:

Neural precursor cell expressed, developmentally downregulated 9

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptors

p-p53:

Phosphorylated p53

p-mTOR:

Phosphorylated mammalian target of rapamycin

p-AMPK:

Phosphorylated adenosine monophosphate-activated protein kinase

p-FAK:

Phosphorylated focal adhesion kinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide

H&E:

Hematoxylin and eosin

TUNEL:

TdT-mediated dUTP-X nick end labeling

References

  • Baker CH, Kedar D, McCarty MF, Tsan R, Weber KL, Bucana CD, Fidler IJ (2002) Blockade of epidermal growth factor receptor signaling on tumor cells and tumor-associated endothelial cells for therapy of human carcinomas. Am J Pathol 161(3):929–938. doi:10.1016/S0002-9440(10)64253-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116. doi:10.1038/nrc1799

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Shimamura T, Rikova K, Jackson AL, Wilkerson MD, Borgman CL, Buttarazzi MS, Sanofsky BA, McNamara KL, Brandstetter KA, Walton ZE, Gu TL, Silva JC, Crosby K, Shapiro GI, Maira SM, Ji H, Castrillon DH, Kim CF, García-Echeverría C, Bardeesy N, Sharpless NE, Hayes ND, Kim WY, Engelman JA, Wong KK (2010) Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 17(6):547–559. doi:10.1016/j.ccr.2010.04.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Wang X, Wang Y, Yang L, Hu J, Xiao W, Fu A, Cai L, Li X, Ye X, Liu Y, Wu W, Shao X, Mao Y, Wei Y, Chen L (2010) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Control Release 145(1):17–25. doi:10.1016/j.jconrel.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  • Deng WG, Wu G, Ueda K, Xu K, Roth JA, Ji L (2007a) Enhancement of antitumor activity of cisplatin in human lung cancer cells by tumor suppressor FUS1. Cancer Gene Ther 15(1):29–39. doi:10.1038/sj.cgt.7701094

    Article  PubMed  Google Scholar 

  • Deng WG, Kawashima H, Wu G, Jayachandran G, Xu K, Minna JD, Roth JA, Ji L (2007b) Synergistic tumor suppression by coexpression of FUS1 and p53 is associated with down-regulation of murine double minute-2 and activation of the apoptotic protease-activating factor 1–dependent apoptotic pathway in human non-small cell lung cancer cells. Cancer Res 67(2):709–717. doi:10.1158/0008-5472.CAN-06-3463

    Article  CAS  PubMed  Google Scholar 

  • Dings RP, Yokoyama Y, Ramakrishnan S, Griffioen AW, Mayo KH (2003) The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res 63(2):382–385

    CAS  PubMed  Google Scholar 

  • Garinis GA, Gorgoulis VG, Mariatos G, Zacharatos P, Kotsinas A, Liloglou T, Foukas P, Kanavaros P, Kastrinakis NG, Vassilakopoulos T, Vogiatzi T, Field JK, Kittas C (2001) Association of allelic loss at the FHIT locus and p53 alterations with tumour kinetics and chromosomal instability in non-small cell lung carcinomas (NSCLCs). J Pathol 193(1):55–65. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH731>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  • Ghaffar H, Sahin F, Sanchez-Cepedes M, Su GH, Zahurak M, Sidransky D, Westra WH (2003) LKB1 protein expression in the evolution of glandular neoplasia of the lung. Clin Cancer Res 9(8):2998–3003

    CAS  PubMed  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226. doi:10.1016/j.molcel.2008.03.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD (2001) Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol Biol 47(1–2):295–310

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol 4(9):648–657. doi:10.1038/ncb839

    Article  CAS  PubMed  Google Scholar 

  • Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch CD, Xu K, Atkinson EN, Bekele BN, Stephens LC, Minna JD, Roth JA, Ramesh R (2004) Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 11(11):733–739. doi:10.1038/sj.cgt.7700756

    Article  CAS  PubMed  Google Scholar 

  • Ivanova AV, Ivanov SV, Pascal V, Lumsden JM, Ward JM, Morris N, Tessarolo L, Anderson SK, Lerman MI (2007) Autoimmunity, spontaneous tumourigenesis, and IL-15 insufficiency in mice with a targeted disruption of the tumour suppressor gene Fus1. J Pathol 211(5):591–601. doi:10.1002/path.2146

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H (2009) LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89(3):777–798. doi:10.1152/physrev.00026.2008

    Article  CAS  PubMed  Google Scholar 

  • Ji L, Roth JA (2008) Tumor suppressor FUS1 signaling pathway. J Thorac Oncol 3(4):327–330. doi:10.1097/JTO.0b013e31816bce65

    Article  PubMed Central  PubMed  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, Liang MC, Cai D, Naumov GN, Bao L, Contreras CM, Li D, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR, Padera RF, Bronson RT, Lindeman NI, Christiani DC, Lin X, Shapiro GI, Jänne PA, Johnson BE, Meyerson M, Kwiatkowski DJ, Castrillon DH, Bardeesy N, Sharpless NE, Wong KK (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448(7155):807–810. doi:10.1038/nature06030

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293. doi:10.1016/j.molcel.2005.03.027

    Article  CAS  PubMed  Google Scholar 

  • Kitaura J, Asai K, Maeda-Yamamoto M, Kawakami Y, Kikkawa U, Kawakami T (2000) Akt-dependent cytokine production in mast cells. J Exp Med 192(5):729–740. doi:10.1084/jem.192.5.729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koivunen JP, Kim J, Lee J, Rogers AM, Park JO, Zhao X, Naoki K, Okamoto I, Nakagawa K, Yeap BY, Meyerson M, Wong KK, Richards WG, Sugarbaker DJ, Johnson BE, Jänne PA (2008) Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br J Cancer 99(2):245–252. doi:10.1038/sj.bjc.6604469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lechanteur C, Delvenne P, Princen F, Lopez M, Fillet G, Gielen J, Merville MP, Bours V (2000) Combined suicide and cytokine gene therapy for peritoneal carcinomatosis. Gut 47(3):343–348. doi:10.1136/gut.47.3.343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerman MI, Minna JD (2000) The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. Cancer Res 60(21):6116–6133

    CAS  PubMed  Google Scholar 

  • Mahoney CL, Choudhury B, Davies H, Edkins S, Greenman C, Haaften Gv, Mironenko T, Santarius T, Stevens C, Stratton MR, Futreal PA (2009) LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer 100(2):370–375. doi:10.1038/sj.bjc.6604886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moriuchi S, Glorioso JC, Maruno M, Izumoto S, Wolfe D, Huang S, Cohen JB, Yoshimine T (2005) Combination gene therapy for glioblastoma involving herpes simplex virus vector-mediated codelivery of mutant IκBα and HSV thymidine kinase. Cancer Gene Ther 12(5):487–496. doi:10.1038/sj.cgt.7700816

    CAS  PubMed  Google Scholar 

  • Nguyen DX, Massagué J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352. doi:10.1038/nrg2101

    Article  CAS  PubMed  Google Scholar 

  • Nishizaki M, Sasaki J, Fang B, Atkinson EN, Minna JD, Roth JA, Ji L (2004) Synergistic tumor suppression by coexpression of FHIT and p53 coincides with FHIT-mediated MDM2 inactivation and p53 stabilization in human non-small cell lung cancer cells. Cancer Res 64(16):5745–5752. doi:10.1158/0008-5472.CAN-04-0195

    Article  CAS  PubMed  Google Scholar 

  • Ou W, Ye S, Yang W, Wan Y, Ma Q, Yu C, Shi H, Yuan Z, Zhong G, Ren J (2012) Enhanced antitumor effect of cisplatin in human NSCLC cells by tumor suppressor LKB1. Cancer Gene Ther 19(7):489–498. doi:10.1038/cgt.2012.18

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Peng XC, Leng F, Yuan QZ, Shan Y, Yu DD, Li ZY, Chen X, Xiao WJ, Wen Y, Ma TT, Yang L, Mao YQ, Yang HS, Wei YQ, Wang CT (2011) Therapeutic effects of survivin dominant negative mutant in a mouse model of prostate cancer. J Cancer Res Clin Oncol 137(1):19–28. doi:10.1007/s00432-010-0855-2

    Article  CAS  PubMed  Google Scholar 

  • Prudkin L, Behrens C, Liu DD, Zhou X, Ozburn NC, Bekele BN, Minna JD, Moran C, Roth JA, Ji L, Wistuba II (2008) Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clin Cancer Res 14(1):41–47. doi:10.1158/1078-0432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramalingam SS, Owonikoko TK, Khuri FR (2011) Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin 61(2):91–112. doi:10.3322/caac.20102

    Article  PubMed  Google Scholar 

  • Robinson J, Lai C, Martin A, Nye E, Tomlinson I, Silver A (2009) Oral rapamycin reduces tumour burden and vascularization in Lkb1(+/-) mice. J Pathol 219(1):35–40. doi:10.1002/path.2562

    Article  CAS  PubMed  Google Scholar 

  • Rojiani MV, Alidina J, Esposito N, Rojiani AM (2010) Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol 3(8):775–781

    PubMed Central  PubMed  Google Scholar 

  • Sakamaki K (2004) Regulation of endothelial cell death and its role in angiogenesis and vascular regression. Curr Neurovasc Res 1(4):305–315. doi:10.2174/1567202043362072

    Article  CAS  PubMed  Google Scholar 

  • Tessema M, Klinge DM, Yingling CM, Do K, Van Neste L, Belinsky SA (2010) Re-expression of CXCL14, a common target for epigenetic silencing in lung cancer, induces tumor necrosis. Oncogene 29(37):5159–5170. doi:10.1038/onc.2010.255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Velden YU, Wang L, Zevenhoven J, van Rooijen E, van Lohuizen M, Giles RH, Clevers H, Haramis AP (2011) The serine-threonine kinase LKB1 is essential for survival under energetic stress in zebrafish. Proc Natl Acad Sci U S A 108(11):4358–4363. doi:10.1073/pnas.1010210108

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu C, Wangpaichitr M, Feun L, Kuo MT, Robles C, Lampidis T, Savaraj N (2005) Overcoming cisplatin resistance by mTOR inhibitor in lung cancer. Mol Cancer 4(1):25. doi:10.1186/1476-4598-4-25

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiang YZ, Feng ZH, Zhang J, Liao YL, Yu CJ, Yi WJ, Zhu W, Yu XQ (2010) Linear cyclen-based polyamine as a novel and efficient reagent in gene delivery. Org Biomol Chem 8(3):640–647. doi:10.1039/b914877a

    Article  CAS  PubMed  Google Scholar 

  • Yu CJ, Ye SJ, Feng ZH, Ou WJ, Zhou XK, Li LD, Mao YQ, Zhu W, Wei YQ (2010) Effect of fraxiparine, a type of low molecular weight heparin, on the invasion and metastasis of lung adenocarcinoma A549 cells. Oncol Lett 1(4):755–760. doi:10.3892/ol_00000132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng PY, Berger SL (2006) LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res 66(22):10701–10708. doi:10.1158/0008-5472.CAN-06-0999

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ying L, Xu R, Ge S, Mei W, Li F, Dai B, Lu J, Qian G (2009) Tumor-specific, hypoxia-regulated, WW domain-containing oxidoreductase-expressing adenovirus inhibits human non-small cell lung cancer growth in vivo. Hum Gene Ther 21(1):27–39. doi:10.1089/hum.2009.021

    Article  CAS  Google Scholar 

  • Zhuang ZG, Di GH, Shen ZZ, Ding J, Shao ZM (2006) Enhanced expression of LKB1 in breast cancer cells attenuates angiogenesis, invasion, and metastatic potential. Mol Cancer Res 4(11):843–849. doi:10.1158/1541-7786.MCR-06-0118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81071863) and the National Science and Technology Major Projects of New Drugs (No. 2012ZX09103301-009). The authors thank for Mrs Yongqiu Mao (Chengdu, China) and Miss Xiaorong Huang (Chengdu, China) for technical support and Dr. Yang Wan (Chengdu, China) for statistical analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijuan Chen or Wen Zhu.

Additional information

Lingdong Li and Chuanjiang Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Yu, C., Ren, J. et al. Synergistic effects of eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on lung cancer in vitro and in vivo. J Cancer Res Clin Oncol 140, 895–907 (2014). https://doi.org/10.1007/s00432-014-1607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1607-5

Keywords

Navigation