Mannan-modified adenovirus encoding VEGFR-2 as a vaccine to induce anti-tumor immunity

  • Jie Zhang
  • Ying Wang
  • Yang Wu
  • Zhen-Yu Ding
  • Xin-Mei Luo
  • Wu-Ning Zhong
  • Jie Liu
  • Xiang-Yu Xia
  • Guo-Hua Deng
  • Yao-Tiao Deng
  • Yu-Quan Wei
  • Yu JiangEmail author
Original Paper



Dendritic cell (DC) vaccines are a promising immunotherapeutic approach for treatment and prevention of cancer. While this methodology is widely accepted, it also has some limitations. Antigen-presenting cells including DCs express the mannan receptor (MR). The delivery of a mannan-modified tumor antigen to the MR has been demonstrated to be efficient. Vascular endothelial growth factor receptor-2 (VEGFR-2) is mainly responsible for angiogenesis and tumor growth. The goal of our study was to deliver VEGFR-2 to DCs by means of mannan-modified adenovirus.


VEGFR-2 recombinant adenovirus modified with oxidized mannan was constructed as a tumor vaccine to immunize mice in vivo. IFN-γ in mouse sera and spleen was detected by ELISA and ELISPOT. The killing activity of cytotoxic T lymphocyte (CTL) against VEGFR-2 was measured with a lactate dehydrogenase assay. Vessel densities in tumor tissues were detected by immunohistochemistry. Flow cytometry was used to test CD4+ and CD8+ T-cell counts in tumor tissues.


The vaccine exhibited both protective and therapeutic efficacy in the inhibition of tumor growth and markedly prolonged survival in mice. Protection against metastasis was also observed. Furthermore, vaccination led to greater IFN-γ and VEGFR-2-specific CTLs. The specific immunity resulted in the suppression of angiogenesis and an increase in CD8+ cells in tumor tissues.


Oxidized mannan-modified adenovirus expressing VEGFR-2 could extraordinarily stimulate both protective and therapeutic immune response in a mice model. Our data suggest that the combination of cancer immunity and anti-angiogenesis via modified mannan is a promising strategy in tumor prophylaxis and therapy.


Dendritic cells Mannan Mannan receptor Adenovirus vector VEGFR-2 



This work was supported by the National Natural Sciences Foundation of China (30801373 and 81172202).

Conflict of interest



  1. Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF (1995) Oxidative/reductive conjugation of mannan to antigen selects for T1 or T2 immune responses. Proc Natl Acad Sci USA 92(22):10128–10132CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azadmehr A, Pourfathollah AA, Amirghofran Z, Hassan ZM, Moazzeni SM (2013) Immunotherapy with tumor cell lysate-pulsed CD8 alpha + dendritic cells modulates intra-tumor and spleen lymphocyte subpopulations. Neoplasma 60(5):525–532. doi: 10.4149/neo_2013_068 CrossRefPubMedGoogle Scholar
  3. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306. doi: 10.1038/nri1592 CrossRefPubMedGoogle Scholar
  4. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi: 10.1038/32588 CrossRefPubMedGoogle Scholar
  5. Bequet-Romero M, Ayala M, Acevedo BE, Rodriguez EG, Ocejo OL, Torrens I, Gavilondo JV (2007) Prophylactic naked DNA vaccination with the human vascular endothelial growth factor induces an anti-tumor response in C57Bl/6 mice. Angiogenesis 10(1):23–34. doi: 10.1007/s10456-006-9062-9 CrossRefPubMedGoogle Scholar
  6. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM (2012) The determinants of tumour immunogenicity. Nat Rev Cancer 12(4):307–313. doi: 10.1038/nrc3246 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cherif MS, Shuaibu MN, Kurosaki T, Helegbe GK, Kikuchi M, Yanagi T, Tsuboi T, Sasaki H, Hirayama K (2011) Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine 29(48):9038–9050. doi: 10.1016/j.vaccine.2011.09.031 CrossRefPubMedGoogle Scholar
  8. Chia WK, Wang WW, Teo M, Tai WM, Lim WT, Tan EH, Leong SS, Sun L, Chen JJ, Gottschalk S, Toh HC (2012) A phase II study evaluating the safety and efficacy of an adenovirus-DeltaLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann Oncol 23(4):997–1005. doi: 10.1093/annonc/mdr341 CrossRefPubMedGoogle Scholar
  9. Danylesko I, Beider K, Shimoni A, Nagler A (2012) Novel strategies for immunotherapy in multiple myeloma: previous experience and future directions. Clin Dev Immunol 2012:753407. doi: 10.1155/2012/753407 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115(1):61–69CrossRefPubMedGoogle Scholar
  11. Ding ZY, Wu Y, Luo Y, Su JM, Li Q, Zhang XW, Liu JY, He QM, Yang L, Tian L, Zhao X, Deng HX, Wen YJ, Li J, Kang B, Wei YQ (2007) Mannan-modified adenovirus as a vaccine to induce antitumor immunity. Gene Ther 14(8):657–663. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  12. Dong J, Yang J, Chen MQ, Wang XC, Wu ZP, Chen Y, Wang ZQ, Li M (2008) A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26. Cancer Biol Ther 7(4):502–509CrossRefPubMedGoogle Scholar
  13. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81CrossRefPubMedGoogle Scholar
  14. Du C, Wang Y (2011) The immunoregulatory mechanisms of carcinoma for its survival and development. J Exp Clin Cancer Res 30:12CrossRefPubMedPubMedCentralGoogle Scholar
  15. East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572(2–3):364–386CrossRefPubMedGoogle Scholar
  16. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59(14):3340–3345PubMedGoogle Scholar
  17. Eggert AO, Becker JC, Ammon M, McLellan AD, Renner G, Merkel A, Brocker EB, Kampgen E (2002) Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture. Eur J Immunol 32(1):122–127. doi: 10.1002/1521-4141(200201)32:1<122::AID-IMMU122>3.0.CO;2-C CrossRefPubMedGoogle Scholar
  18. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5(10):2963–2970PubMedGoogle Scholar
  19. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nystrom S, Rymo S, Chen LL, Pang MF, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellstrom M, Fuxe J, Uhlen P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23(3):587–599. doi: 10.1016/j.devcel.2012.08.005 CrossRefPubMedGoogle Scholar
  20. Gajewski TF, Woo SR, Zha Y, Spaapen R, Zheng Y, Corrales L, Spranger S (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25(2):268–276. doi: 10.1016/j.coi.2013.02.009 CrossRefPubMedGoogle Scholar
  21. Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, Pelletier N, Ferrara N (2001) Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 276(5):3222–3230. doi: 10.1074/jbc.M002016200M002016200 CrossRefPubMedGoogle Scholar
  22. Gu A, Tsark W, Holmes KV, Shively JE (2009) Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture. Exp Cell Res 315(10):1668–1682. doi: 10.1016/j.yexcr.2009.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188(12):2357–2368CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T (2001) Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 194(11):1549–1559CrossRefPubMedPubMedCentralGoogle Scholar
  25. Irjala H, Johansson EL, Grenman R, Alanen K, Salmi M, Jalkanen S (2001) Mannose receptor is a novel ligand for l-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 194(8):1033–1042CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jahnisch H, Fussel S, Kiessling A, Wehner R, Zastrow S, Bachmann M, Rieber EP, Wirth MP, Schmitz M (2010) Dendritic cell-based immunotherapy for prostate cancer. Clin Dev Immunol 2010:517493. doi: 10.1155/2010/517493 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jeon YH, Choi Y, Kim CW, Kim YH, Youn H, Lee J, Chung JK (2010) Human sodium/iodide symporter-mediated radioiodine gene therapy enhances the killing activities of CTLs in a mouse tumor model. Mol Cancer Ther 9(1):126–133. doi: 10.1158/1535-7163.MCT-09-0540 CrossRefPubMedGoogle Scholar
  28. Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E (2012) Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 161(1):25–37CrossRefPubMedGoogle Scholar
  29. Kochenderfer JN, Gress RE (2007) A comparison and critical analysis of preclinical anticancer vaccination strategies. Exp Biol Med (Maywood) 232(9):1130–1141. doi: 10.3181/0702-MR-42232/9/1130 CrossRefGoogle Scholar
  30. Lee S, Margolin K (2012) Tumor-infiltrating lymphocytes in melanoma. Curr Oncol Rep 14(5):468–474. doi: 10.1007/s11912-012-0257-5 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lee SJ, Lim HJ, Choi YH, Chang YH, Lee WJ, Kim do W, Yoon GS (2013) The clinical significance of tumor-infiltrating lymphocytes and microscopic satellites in acral melanoma in a Korean population. Ann Dermatol 25(1):61–66. doi: 10.5021/ad.2013.25.1.61 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lue C, van den Wall Bake AW, Prince SJ, Julian BA, Tseng ML, Radl J, Elson CO, Mestecky J (1994) Intraperitoneal immunization of human subjects with tetanus toxoid induces specific antibody-secreting cells in the peritoneal cavity and in the circulation, but fails to elicit a secretory IgA response. Clin Exp Immunol 96(2):356–363CrossRefPubMedPubMedCentralGoogle Scholar
  33. Luo Y, Markowitz D, Xiang R, Zhou H, Reisfeld RA (2007) FLK-1-based minigene vaccines induce T cell-mediated suppression of angiogenesis and tumor protective immunity in syngeneic BALB/c mice. Vaccine 25(8):1409–1415CrossRefPubMedGoogle Scholar
  34. Mahmoud S, Lee A, Ellis I, Green A (2012) CD8(+) T lymphocytes infiltrating breast cancer: a promising new prognostic marker? Oncoimmunology 1(3):364–365. doi: 10.4161/onci.186142011ONCOIMM0086 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Matsushita N, Aruga A, Inoue Y, Kotera Y, Takeda K, Yamamoto M (2013) Phase I clinical trial of a peptide vaccine combined with tegafur-uracil plus leucovorin for treatment of advanced or recurrent colorectal cancer. Oncol Rep 29(3):951–959. doi: 10.3892/or.2013.2231 PubMedGoogle Scholar
  36. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, Lotze MT (1997) Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 15(2):94–103. doi: 10.1002/stem.150094 CrossRefPubMedGoogle Scholar
  37. McMahon G (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist 5(Suppl 1):3–10CrossRefPubMedGoogle Scholar
  38. Mimura K, Kono K, Takahashi A, Kawaguchi Y, Fujii H (2007) Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother 56(6):761–770. doi: 10.1007/s00262-006-0234-7 CrossRefPubMedGoogle Scholar
  39. Miyazawa M, Ohsawa R, Tsunoda T, Hirono S, Kawai M, Tani M, Nakamura Y, Yamaue H (2010) Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci 101(2):433–439. doi: 10.1111/j.1349-7006.2009.01416.x CrossRefPubMedGoogle Scholar
  40. Morera Y, Bequet-Romero M, Ayala M, Lamdan H, Agger EM, Andersen P, Gavilondo JV (2008) Anti-tumoral effect of active immunotherapy in C57BL/6 mice using a recombinant human VEGF protein as antigen and three chemically unrelated adjuvants. Angiogenesis 11(4):381–393. doi: 10.1007/s10456-008-9121-5 CrossRefPubMedGoogle Scholar
  41. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8(2):177–187CrossRefPubMedGoogle Scholar
  42. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E (2003) Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102(3):964–971. doi: 10.1182/blood-2002-12-37382002-12-3738 CrossRefPubMedGoogle Scholar
  43. Nieminen T, Toivanen PI, Rintanen N, Heikura T, Jauhiainen S, Airenne KJ, Alitalo K, Marjomaki V, Yla-Herttuala S (2014) The impact of the receptor binding profiles of the vascular endothelial growth factors on their angiogenic features. Biochim Biophys Acta 1:454–463. doi: 10.1016/j.bbagen.2013.10.005 CrossRefGoogle Scholar
  44. Pace JL, Russell SW, Torres BA, Johnson HM, Gray PW (1983) Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol 130(5):2011–2013PubMedGoogle Scholar
  45. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277. doi: 10.1038/nrc3258 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Prado-Garcia H, Romero-Garcia S, Aguilar-Cazares D, Meneses-Flores M, Lopez-Gonzalez JS (2012) Tumor-induced CD8 + T-cell dysfunction in lung cancer patients. Clin Dev Immunol 2012:741741. doi: 10.1155/2012/741741 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Prevost-Blondel A, Neuenhahn M, Rawiel M, Pircher H (2000) Differential requirement of perforin and IFN-gamma in CD8 T cell-mediated immune responses against B16.F10 melanoma cells expressing a viral antigen. Eur J Immunol 30(9):2507–2515. doi: 10.1002/1521-4141(200009)30:9<2507:AID-IMMU2507>3.0.CO;2-V CrossRefPubMedGoogle Scholar
  48. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T (2003) A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8 + T cells. Cancer Res 63(14):4095–4100PubMedGoogle Scholar
  49. Rosenberg SA, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, White DE (2003) Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther 14(8):709–714. doi: 10.1089/104303403765255110 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL (2000) Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci USA 97(9):4802–4807. doi: 10.1073/pnas.090065597090065597 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, Offringa R, Figdor CG, Adema GJ (2000) Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 60(24):6995–7001PubMedGoogle Scholar
  52. Schultz RM, Kleinschmidt WJ (1983) Functional identity between murine gamma interferon and macrophage activating factor. Nature 305(5931):239–240CrossRefPubMedGoogle Scholar
  53. Sheng KC, Pouniotis DS, Wright MD, Tang CK, Lazoura E, Pietersz GA, Apostolopoulos V (2006) Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells. Immunology 118(3):372–383. doi: 10.1111/j.1365-2567.2006.02384.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. Stambas J, Pietersz G, McKenzie I, Cheers C (2002) Oxidised mannan as a novel adjuvant inducing mucosal IgA production. Vaccine 20(7–8):1068–1078CrossRefPubMedGoogle Scholar
  55. Steel JC, Di Pasquale G, Ramlogan CA, Patel V, Chiorini JA, Morris JC (2013) Oral vaccination with adeno-associated virus vectors expressing the Neu oncogene inhibits the growth of murine breast cancer. Mol Ther 21(3):680–687. doi: 10.1038/mt.2012.260 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Steitz J, Bruck J, Steinbrink K, Enk A, Knop J, Tuting T (2000) Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 86(1):89–94. doi: 10.1002/(SICI)1097-0215(20000401)86:1<89:AID-IJC14>3.0.CO;2-I CrossRefPubMedGoogle Scholar
  57. Tang CK, Sheng KC, Pouniotis D, Esparon S, Son HY, Kim CW, Pietersz GA, Apostolopoulos V (2008) Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine 26(31):3827–3834. doi: 10.1016/j.vaccine.2008.05.008 CrossRefPubMedGoogle Scholar
  58. Toldbod HE, Agger R, Bolund L, Hokland M (2003) Potent influence of bovine serum proteins in experimental dendritic cell-based vaccination protocols. Scand J Immunol 58(1):43–50CrossRefPubMedGoogle Scholar
  59. Turkeri L, Onol FF, Ozyurek M (2010) Tumor specific cytotoxicity and telomerase down-regulation in prostate cancer by autologous dendritic cells loaded with whole tumor cell antigens. Urol Oncol 28(3):290–295. doi: 10.1016/j.urolonc.2009.01.029 CrossRefPubMedGoogle Scholar
  60. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, Tonn JC, Menger MD, Breier G (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109(6):777–785. doi: 10.1172/JCI14105 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28(2):223–232. doi: 10.1161/ATVBAHA.107.158014 CrossRefPubMedGoogle Scholar
  62. Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, Tahara H (2005) Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res 65(11):4939–4946. doi: 10.1158/0008-5472.CAN-04-375965/11/4939 CrossRefPubMedGoogle Scholar
  63. Wang B, Kaumaya PT, Cohn DE (2010) Immunization with synthetic VEGF peptides in ovarian cancer. Gynecol Oncol 119(3):564–570. doi: 10.1016/j.ygyno.2010.07.037 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wei Y, Sun Y, Song C, Li H, Li Y, Zhang K, Gong J, Liu F, Liu Z, August JT, Jin B, Yang K (2012) Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. J Gene Med 14(5):353–362. doi: 10.1002/jgm.2624 CrossRefPubMedGoogle Scholar
  65. Weidmann E, Brieger J, Jahn B, Hoelzer D, Bergmann L, Mitrou PS (1995) Lactate dehydrogenase-release assay: a reliable, nonradioactive technique for analysis of cytotoxic lymphocyte-mediated lytic activity against blasts from acute myelocytic leukemia. Ann Hematol 70(3):153–158CrossRefPubMedGoogle Scholar
  66. Yan J, Jia R, Song H, Liu Y, Zhang L, Zhang W, Wang Y, Zhu Y, Yu J (2009) A promising new approach of VEGFR2-based DNA vaccine for tumor immunotherapy. Immunol Lett 126(1–2):60–66. doi: 10.1016/j.imlet.2009.07.013 CrossRefPubMedGoogle Scholar
  67. Zhang H, Sonoda KH, Hijioka K, Qiao H, Oshima Y, Ishibashi T (2009) Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization. Biochem Biophys Res Commun 381(4):471–476. doi: 10.1016/j.bbrc.2009.01.178 CrossRefPubMedGoogle Scholar
  68. Zhao Z, Yao Y, Ding Z, Chen X, Xie K, Luo Y, Zhang J, Wu X, Xu J, Zhao J, Niu T, Liu J, Li Q, Zhang W, Wen Y, Su J, Hu B, Bu H, Wei Y, Wu Y (2011) Antitumour immunity mediated by mannan-modified adenovirus vectors expressing VE-cadherin. Vaccine 29(25):4218–4224. doi: 10.1016/j.vaccine.2011.03.109 CrossRefPubMedGoogle Scholar
  69. Zheng X, Koropatnick J, Chen D, Velenosi T, Ling H, Zhang X, Jiang N, Navarro B, Ichim TE, Urquhart B, Min W (2013) Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int J Cancer 132(4):967–977. doi: 10.1002/ijc.27710 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jie Zhang
    • 1
  • Ying Wang
    • 1
  • Yang Wu
    • 1
  • Zhen-Yu Ding
    • 1
  • Xin-Mei Luo
    • 1
  • Wu-Ning Zhong
    • 1
  • Jie Liu
    • 1
  • Xiang-Yu Xia
    • 1
  • Guo-Hua Deng
    • 1
  • Yao-Tiao Deng
    • 1
  • Yu-Quan Wei
    • 1
  • Yu Jiang
    • 1
    Email author
  1. 1.Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations