Skip to main content

Advertisement

Log in

Tumor self-seeding by circulating tumor cells in nude mouse models of human osteosarcoma and a preliminary study of its mechanisms

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to determine whether and how tumor self-seeding by circulating tumor cells (CTCs) plays a role in the initiation and progression of osteosarcoma.

Methods

Two different nude mouse models of human osteosarcoma were established for detecting tumor self-seeding by fluorescently labeled CTCs. Various tumor growth indicators were quantitated for seeded and unseeded groups. Growth mechanisms were characterized using cell proliferation assays and immunohistochemical staining. Conditioned media of primary osteosarcoma cells was characterized in a Transwell migration assay and enzyme-linked immunosorbent assay. The effect of cytokines secreted by primary tumor cells was verified by small interfering RNA and recombinant human cytokine experiments.

Results

Red fluorescent protein-labeled CTCs seeded primary tumors in both models. Seeded primary tumors groups grew faster than control groups (P < 0.05), which was partially attributed to the CTCs having a higher proliferation rate and higher vascular endothelial growth factor expression after self-seeding. Conditioned media of primary osteosarcoma cells attracted CTCs, through an IL-6-dependent mechanism.

Conclusions

CTC tumor self-seeding occurs in osteosarcoma and promotes the growth of primary osteosarcoma. CTCs appear to be recruited by cytokines secreted by primary osteosarcoma cells, particularly IL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguirre-Ghiso JA (2010) On the theory of tumor self-seeding: implications for metastasis progression in humans. Breast Cancer Res 12:304

    Article  PubMed Central  PubMed  Google Scholar 

  • Ara T, Declerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46:1223–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avigad S, Cohen IJ, Zilberstein J, Liberzon E, Goshen Y, Ash S, Meller I, Kollender Y, Issakov J, Zaizov R et al (2004) The predictive potential of molecular detection in the nonmetastatic Ewing family of tumors. Cancer 100:1053–1058

    Article  PubMed  Google Scholar 

  • Bian ZY, Fan QM, Li G, Xu WT, Tang TT (2010) Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci 101:2554–2560

    Article  CAS  PubMed  Google Scholar 

  • Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Bromberg J (2002) Stat proteins and oncogenesis. J Clin Investig 109:1139–1142

    CAS  PubMed  Google Scholar 

  • Chen X, Yang TT, Wang W, Sun HH, Ma BA, Li CX, Ma Q, Yu Z, Fan QY (2009) Establishment and characterization of human osteosarcoma cell lines with different pulmonary metastatic potentials. Cytotechnology 61:37–44

    Article  PubMed Central  PubMed  Google Scholar 

  • Chou AJ, Merola PR, Wexler LH, Gorlick RG, Vyas YM, Healey JH, LaQuaglia MP, Huvos AG, Meyers PA (2005) Treatment of osteosarcoma at first recurrence after contemporary therapy: the Memorial Sloan-Kettering Cancer Center experience. Cancer 104:2214–2221

    Article  PubMed  Google Scholar 

  • Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP (2013) Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. PLoS Pathog 9:e1003484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comen E, Norton L, Massagué J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377

    PubMed  Google Scholar 

  • Daw NC, Billups CA, Rodriguez-Galindo C, McCarville MB, Rao BN, Cain AM, Jenkins JJ, Neel MD, Meyer WH (2006) Metastatic osteosarcoma. Cancer 106:403–412

    Article  PubMed  Google Scholar 

  • Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Kobayashi A, Watabe K (2012) The role of tumor-associated macrophage in tumor progression. Front Biosci (Schol Ed) 4:787–798

    Article  Google Scholar 

  • Gerges N, Jabado N (2010) Biomarkers in cancer micrometastasis: where are we at? Bioanalysis 2:881–899

    Article  CAS  PubMed  Google Scholar 

  • Grunewald TG, Herbst SM, Heinze J, Burdach S (2011) Understanding tumor heterogeneity as functional compartments–superorganisms revisited. J Transl Med 9:79

    Article  PubMed Central  PubMed  Google Scholar 

  • Hahnfeldt P (2010) Significance of tumor self-seeding as an augmentation to the classic metastasis paradigm. Future Oncol 6:681–685

    Article  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  CAS  PubMed  Google Scholar 

  • Hong DS, Angelo LS, Kurzrock R (2007) Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 110:1911–1928

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Yu L, Cooper LJ, Hollomon M, Huls H, Kleinerman ES (2012) Genetically modified T cells targeting interleukin-11 receptor α-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res 72:271–281

    Article  CAS  PubMed  Google Scholar 

  • Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, Hong SH, Ren L, Wong D, Korz W, Merzouk A et al (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25:201–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massagué J (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326

    Article  PubMed Central  PubMed  Google Scholar 

  • Kong C, Hansen MF (2009) Biomarkers in osteosarcoma. Expert Opin Med Diagn 3:13–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C (2010) Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol 2:351–365

    Article  PubMed Central  PubMed  Google Scholar 

  • Laverdiere C, Hoang BH, Yang R, Sowers R, Qin J, Meyers PA, Huvos AG, Healey JH, Gorlick R (2005) Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res 11:2561–2567

    Article  CAS  PubMed  Google Scholar 

  • Leung CT, Brugge JS (2009) Tumor self-seeding: bidirectional flow of tumor cells. Cell 139:1226–1228

    Article  PubMed  Google Scholar 

  • Lewis JJ, Leung D, Espat J, Woodruff JM, Brennan MF (2000) Effect of reresection in extremity soft tissue sarcoma. Ann Surg 231:655–663

    Article  CAS  PubMed  Google Scholar 

  • Lewis VO, Ozawa MG, Deavers MT, Wang G, Shintani T, Arap W, Pasqualini R (2009) The interleukin-11 receptor alpha as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res 69:1995–1999

    Article  CAS  PubMed  Google Scholar 

  • Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, Pritchard J, Malpas JS, Baker AR, Kirkpatrick JA et al (1986) The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314:1600–1606

    Article  CAS  PubMed  Google Scholar 

  • Marina N, Gebhardt M, Teot L, Gorlick R (2004) Biology and therapeutic advances for pediatric osteosarcoma. Oncologist 9:422–441

    Article  PubMed  Google Scholar 

  • Mavroudis D (2010) Circulating cancer cells. Ann Oncol 21(Suppl 7):vii95–vii100

    PubMed  Google Scholar 

  • McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH (2011) The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 11:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935

    Article  CAS  PubMed  Google Scholar 

  • Miller IV, Raposo G, Welsch U, Prazeres da Costa O, Thiel U, Lebar M, Maurer M, Bender HU, von Luettichau I, Richter GH et al (2013) First identification of Ewing’s sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol Cell 105:289–303

    Article  CAS  PubMed  Google Scholar 

  • Murphy PM (2001) Chemokines and the molecular basis of cancer metastasis. N Engl J Med 345:833–835

    Article  CAS  PubMed  Google Scholar 

  • Nicolini A, Carpi A, Rossi G (2006) Cytokines in breast cancer. Cytokine Growth Factor Rev 17:325–337

    Article  CAS  PubMed  Google Scholar 

  • Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537–6553

    Article  CAS  PubMed  Google Scholar 

  • Perissinotto E, Cavalloni G, Leone F, Fonsato V, Mitola S, Grignani G, Surrenti N, Sangiolo D, Bussolino F, Piacibello W et al (2005) Involvement of chemokine receptor 4/stromal cell-derived factor 1 system during osteosarcoma tumor progression. Clin Cancer Res 11:490–497

    CAS  PubMed  Google Scholar 

  • Putoczki T, Ernst M (2010) More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol 88:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, Zhou Z, Jia SF, Lee TH, Morales-Arias J, Cao Y, Kleinerman ES (2008) Stromal cell-derived factor-1 stimulates vasculogenesis and enhances Ewing’s sarcoma tumor growth in the absence of vascular endothelial growth factor. Int J Cancer 123:831–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy BY, Lim PK, Silverio K, Patel SA, Won BW, Rameshwar P (2012) The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow. Int J Breast Cancer 2012:721659

    Article  PubMed Central  PubMed  Google Scholar 

  • Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol 21(Suppl 7):vii320–vii325

    PubMed  Google Scholar 

  • Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F, Sommelet-Olive D, Landman-Parker J, Bours D, Michon J et al (2003) Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol 21:85–91

    Article  PubMed  Google Scholar 

  • Skubitz KM, D’Adamo DR (2007) Sarcoma. Mayo Clin Proc 82:1409–1432

    Article  CAS  PubMed  Google Scholar 

  • Sterling JA, Edwards JR, Martin TJ, Mundy GR (2011) Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone 48:6–15

    Article  CAS  PubMed  Google Scholar 

  • Tu B, Du L, Fan QM, Tang Z, Tang TT (2012) STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett 325:80–88

    Article  CAS  PubMed  Google Scholar 

  • Vendramini-Costa DB, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 18:3831–3852

    Article  CAS  PubMed  Google Scholar 

  • Whelan J, Seddon B, Perisoglou M (2006) Management of osteosarcoma. Curr Treat Options Oncol 7:444–455

    Article  PubMed  Google Scholar 

  • Wong IH, Chan AT, Johnson PJ (2000) Quantitative analysis of circulating tumor cells in peripheral blood of osteosarcoma patients using osteoblast-specific messenger RNA markers: a pilot study. Clin Cancer Res 6:2183–2188

    CAS  PubMed  Google Scholar 

  • Xu WT, Bian ZY, Fan QM, Li G, Tang TT (2009) Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 281:32–41

    Article  CAS  PubMed  Google Scholar 

  • Zhang HG, Grizzle WE (2011) Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res 17:959–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (No. 81372297, 30973409, 81201633).

Conflict of interest

The authors have declared that no conflict of interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyu Fan or Xiuchun Qiu.

Additional information

Yinglong Zhang, Qiong Ma and Tao Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Ma, Q., Liu, T. et al. Tumor self-seeding by circulating tumor cells in nude mouse models of human osteosarcoma and a preliminary study of its mechanisms. J Cancer Res Clin Oncol 140, 329–340 (2014). https://doi.org/10.1007/s00432-013-1561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1561-7

Keywords

Navigation