Skip to main content

Advertisement

Log in

Elevated circulating levels of tissue factor-positive microvesicles are associated with distant metastasis in lung cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Microvesicles (MV) in the blood stream are associated with distant metastasis in cancer. Platelet or endothelial cell-related MV actively participate in thrombogenesis, which is an important step in cancer metastasis. This study investigated the correlations between MV levels of platelet-poor plasma and distant metastasis in lung cancer.

Methods

Platelet-poor plasma from 44 treatment-naive lung cancer (23 with distant metastasis) and 19 normal subjects was used to determine the levels of glycoprotein Iβ (CD42) + platelet MV (PMV), P-selectin (CD62P) + PMV, VE-cadherin (CD144) + endothelial MV (EMV), tissue factor (CD142) + MV, thrombin-antithrombin complex and vascular endothelial growth factor (VEGF).

Results

The level of CD142 + MV was significant (odds ratio 5.86, 95 % confidence interval 1.31–38.3) in predicting distant metastasis in lung cancer, and a cutoff value of 2.668 (after logarithm transformation) in the ROC curve had a specificity of 90 % and a sensitivity of 59 %. The presence of distant metastasis showed a significant correlation between CD144 + EMV and VEGF, but not between CD144 + EMV and CD42 + PMV or CD62P + PMV in lung cancer subjects.

Conclusions

The finding of CD142 + MV in platelet-poor plasma may be useful for suggesting distant metastasis in lung cancer. In addition to thrombogenesis, interaction between VE-cadherin and VEGF may be needed for successful metastasis in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci 106(10):3794–3799. doi:10.1073/pnas.0804543106

    Article  PubMed  Google Scholar 

  • Amabile N, Guérin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16(11):3381–3388. doi:10.1681/asn.2005050535

    Article  CAS  PubMed  Google Scholar 

  • Amirkhosravi A, Meyer T, Amaya M, Davila M, Mousa SA, Robson T, Francis JL (2007) The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost 33(7):643–652. doi:10.1055/s-2007-991531

    Article  CAS  PubMed  Google Scholar 

  • Asakura H, Hifumi S, Jokaji H, Saito M, Kumabashiri I, Uotani C, Morishita E, Yamazaki M, Shibata K, Mizuhashi K (1992) Prothrombin fragment F1 + 2 and thrombin-antithrombin III complex are useful markers of the hypercoagulable state in atrial fibrillation. Blood Coagul Fibrinolysis 3(4):469–473

    CAS  PubMed  Google Scholar 

  • Boda-Heggemann J, Regnier-Vigouroux A, Franke WW (2009) Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-) cadherin-containing junctions in non-endothelial cells. Cell Tissue Res 335(1):49–65. doi:10.1007/s00441-008-0718-1

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Collen D (2000) Molecular basis of angiogenesis: role of VEGF and VE-cadherin. Ann NY Acad Sci 902(1):249–264. doi:10.1111/j.1749-6632.2000.tb06320.x

    Article  CAS  PubMed  Google Scholar 

  • Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet J-M, Tedgui A (2009) Endothelial microparticles in diseases. Cell Tissue Res 335(1):143–151

    Article  PubMed  Google Scholar 

  • de Groot PG, Urbanus RT, Roest M (2012) Platelet interaction with the vessel wall. Handb Exp Pharmacol 210:87–110. doi:10.1007/978-3-642-29423-5_4

    Article  PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  • Fleitas T, Martinez-Sales V, Vila V, Reganon E, Mesado D, Martin M, Gomez-Codina J, Montalar J, Reynes G (2012) Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer. PLoS ONE 7(10):e47365. doi:10.1371/journal.pone.0047365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, Tetta C, Bussolati B, Camussi G (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356. doi:10.1158/0008-5472.can-11-0241

    Article  CAS  PubMed  Google Scholar 

  • Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027. doi:10.1200/jco.2005.06.081

    Article  CAS  PubMed  Google Scholar 

  • Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801. doi:10.1158/0008-5472.can-10-4455

    Article  CAS  PubMed  Google Scholar 

  • Horstman LL, Ahn YS (1999) Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 30(2):111–142. doi:10.1016/S1040-8428(98)00044-4

    Article  CAS  PubMed  Google Scholar 

  • Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S, Kyrle PA, Weltermann A (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemos 97(1):119–123. doi:10.1160/TH06-03-0141

    Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113(5):752–760. doi:10.1002/ijc.20657

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Kim HK, Ryu KW, Bae JM, Kim S (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39(2):184–191. doi:10.1016/S0959-8049(02)00596-8

    Article  CAS  PubMed  Google Scholar 

  • Lee AY (2002) Cancer and thromboembolic disease: pathogenic mechanisms. Cancer Treat Rev 28(3):137–140. doi:10.1016/S0305-7372(02)00044-0

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Mason M, Jiang W (2011) Tight junctions in cancer metastasis. Front Biosci 16:898

    Article  CAS  Google Scholar 

  • Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057. doi:10.1161/circresaha.110.226456

    Article  CAS  PubMed  Google Scholar 

  • Möhle R, Green D, Moore MAS, Nachman RL, Rafii S (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci 94(2):663–668

    Article  PubMed  Google Scholar 

  • Monroe D, Hoffman M, Roberts H (2010) Molecular biology and biochemistry of the coagulation factors and pathways of hemostasis. In: Prchal J, Kaushansky K, Lichtman M, Kipps T, Seligsohn U (eds) Williams hematology, 8th edn. McGraw-Hill, New York

    Google Scholar 

  • Mourey L, Samama J, Delarue M, Choay J, Lormeau J, Petitou M, Moras D (1990) Antithrombin III: structural and functional aspects. Biochimie 72(8):599–608

    Article  CAS  PubMed  Google Scholar 

  • Müller I, Klocke A, Alex M, Kotzsch M, Luther T, Morgenstern E, Zieseniss S, Zahler S, Preissner K, Engelmann B (2003) Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 17(3):476–478. doi:10.1096/fj.02-0574fje

    PubMed  Google Scholar 

  • Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123(10):1603–1611. doi:10.1242/jcs.064386

    Article  CAS  PubMed  Google Scholar 

  • Nierodzik ML, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10(5):355–362. doi:10.1016/j.ccr.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  • Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21(3):157–171. doi:10.1016/j.blre.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  • Polgar J, Matuskova J, Wagner D (2005) The P-selectin, tissue factor, coagulation triad. J Thromb Haemost 3(8):1590–1596

    Article  CAS  PubMed  Google Scholar 

  • Rickles FR (2006) Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol Haemost Thromb 35(1–2):103–110

    Article  PubMed  Google Scholar 

  • Sawada M, Miyake S, Ohdama S, Matsubara O, Masuda S, Yakumaru K, Yoshizawa Y (1999) Expression of tissue factor in non-small-cell lung cancers and its relationship to metastasis. Br J Cancer 79(3/4):472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seitz R, Heidtmann H–H, Wolf M, Immel A, Egbring R (1997) Prognostic impact of an activation of coagulation in lung cancer. Ann Oncol 8(8):781–784

    Article  CAS  PubMed  Google Scholar 

  • Versteeg HH, Spek CA, Peppelenbosch MP, Richel DJ (2004) Tissue factor and cancer metastasis: the role of intracellular and extracellular signaling pathways. Mol Med 10(1–6):6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Versteeg HH, Heemskerk JW, Levi M, Reitsma PH (2013) New fundamentals in hemostasis. Physiol Rev 93(1):327–358

    Article  CAS  PubMed  Google Scholar 

  • Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28(2):223–232. doi:10.1161/atvbaha.107.158014

    Article  CAS  PubMed  Google Scholar 

  • Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167(2):223–229. doi:10.1083/jcb.200408130

    Article  CAS  PubMed  Google Scholar 

  • Wysoczynski M, Ratajczak MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer 125(7):1595–1603. doi:10.1002/ijc.24479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Chang Gung Memorial Hospital at Keelung (CMRPG260591).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ching Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, JC., Chang, LC., Jiang, BY. et al. Elevated circulating levels of tissue factor-positive microvesicles are associated with distant metastasis in lung cancer. J Cancer Res Clin Oncol 140, 61–67 (2014). https://doi.org/10.1007/s00432-013-1544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1544-8

Keywords

Navigation