Skip to main content

Advertisement

Log in

p42.3: A promising biomarker for the progression and prognosis of human colorectal cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

As a novel cell cycle-related gene, p42.3 has been shown to play a key role in the cell proliferation and tumorigenicity of gastric cancer. To date, the association between p42.3 and colorectal cancer (CRC) has not been reported. This study investigated the expression of p42.3 and its potential role in human colorectal cancers.

Methods

Real-time polymerase chain reaction and western blotting were used to evaluate p42.3 mRNA and protein expression in 14 pairs of fresh frozen CRC samples, matched with adjacent normal mucosa. The p42.3 protein was evaluated by immunohistochemistry using CRC tissue microarrays, which included 212 CRC specimens and corresponding normal colorectal mucosa. The expression profiles of p42.3 in CRC tissues were analyzed against clinicopathological factors and post-surgical survival status. The expression profiles of p42.3 were also investigated in six human colon carcinoma cell lines.

Results

p42.3 was demonstrated to be over-expressed in colorectal cancer tissues compared with normal mucosa in the 14 tissue pairs (P = 0.011) and was significantly higher in patients with poor tumor differentiation (P = 0.045); patients positive for p42.3 expression had a poorer prognosis than those not expressing this protein (P = 0.033). In a multivariate survival analysis, p42.3 expression was identified as an independent prognostic factor for CRC patients (P = 0.030).

Conclusions

The results indicated that p42.3 might play an important role in the progression of CRC, and it has a great value for assessing CRC patient prognosis after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bolander A, Agnarsdottir M, Stromberg S, Ponten F, Hesselius P, Uhlen M, Bergqvist M (2008) The protein expression of TRP-1 and galectin-1 in cutaneous malignant melanomas. Cancer Genomics Proteomics 5:293–300

    PubMed  CAS  Google Scholar 

  • Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, Shen ZY, Cao H, Lu YY, Fang JY (2011) MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS ONE 6:e25872

    Article  PubMed  CAS  Google Scholar 

  • de Vries JE, Dinjens WN, De Bruyne GK, Verspaget HW, van der Linden EP, de Bruïne AP, Mareel MM, Bosman FT, ten Kate J (1995) In vivo and in vitro invasion in relation to phenotypic characteristics of human colorectal carcinoma cells. Br J Cancer 71:271–277

    Article  PubMed  Google Scholar 

  • Duranton B, Holl V, Schneider Y, Carnesecchi S, Gossé F, Raul F, Seiler N (2003) Polyamine metabolism in primary human colon adenocarcinoma cells (SW480) and their lymph node metastatic derivatives (SW620). Amino Acids 24:63–72

    PubMed  CAS  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  PubMed  CAS  Google Scholar 

  • Freemantle SJ, Liu X, Feng Q, Galimberti F, Blumen S, Sekula D, Kitareewan S, Dragnev KH, Dmitrovsky E (2007) Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem 102:869–877

    Article  PubMed  CAS  Google Scholar 

  • Gascoigne KE, Taylor SS (2009) How do anti-mitotic drugs kill cancer cells? J Cell Sci 122:2579–2585

    Article  PubMed  CAS  Google Scholar 

  • Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–543

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Yu H, Tan XF, Lim TK, Zubaidah RM, Tan HT, Chung MC, Lin Q (2011) Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res 10:4373–4387

    Article  PubMed  CAS  Google Scholar 

  • Golan A, Pick E, Tsvetkov L, Nadler Y, Kluger H, Stern DF (2010) Centrosomal Chk2 in DNA damage responses and cell cycle progression. Cell Cycle 9:2647–2656

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Yakushijin Y, Ohtsuka M, Kakimoto M, Yasukawa M, Fujita S (2003) Aurora2/BTAK/STK15 is involved in cell cycle checkpoint and cell survival of aggressive non-hodgkin’s lymphoma. Br J Haematol 121:439–447

    Article  PubMed  CAS  Google Scholar 

  • Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    Article  PubMed  CAS  Google Scholar 

  • Janssen A, Medema RH (2011) Mitosis as an anti-cancer target. Oncogene 30:2799–2809

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  • Jung Y, Lee S, Choi HS, Kim SN, Lee E, Shin Y, Seo J, Kim B, Jung Y, Kim WK, Chun HK, Lee WY, Kim J (2011) Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clin Cancer Res 17:700–709

    Article  PubMed  CAS  Google Scholar 

  • Kelling J, Sullivan K, Wilson L, Jordan MA (2003) Suppression of centromere dynamics by taxol in living osteosarcoma cells. Cancer Res 63:2794–2801

    PubMed  CAS  Google Scholar 

  • Leibovitz A, Stinson JC, McCombs WB 3rd, McCoy CE, Mazur KC, Mabry ND (1976) Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36:4562–4569

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lyall MS, Dundas SR, Curran S, Murray GI (2006) Profiling markers of prognosis in colorectal cancer. Clin Cancer Res 12:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Sun W, Li W, Cui J, Zhang J, Xing R, Lu Y (2012) Cell cycle-dependent expression of p42.3 promotes mitotic progression in malignant transformed cells. Mol Carcinog. doi:10.1002/mc.21982

    Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140

    Article  PubMed  CAS  Google Scholar 

  • Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45:3104–3118

    Article  PubMed  CAS  Google Scholar 

  • Okouneva T, Hill BT, Wilson L, Jordan MA (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2:427–436

    PubMed  CAS  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590–11593

    Article  PubMed  CAS  Google Scholar 

  • Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8:138–140

    PubMed  CAS  Google Scholar 

  • Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421

    Article  PubMed  CAS  Google Scholar 

  • Stone A, Sutherland RL, Musgrove EA (2012) Inhibitors of cell cycle kinases: recent advances and future prospects as cancer therapeutics. Crit Rev Oncog 17:175–198

    Article  PubMed  Google Scholar 

  • Takahashi T, Sano B, Nagata T, Kato H, Sugiyama Y, Kunieda K, Kimura M, Okano Y, Saji S (2003) Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci 94:148–152

    Article  PubMed  CAS  Google Scholar 

  • Vankayalapati H, Bearss DJ, Saldanha JW, Muñoz RM, Rojanala S, Von Hoff DD, Mahadevan D (2003) Targeting aurora2 kinase in oncogenesis: a structural bioinformatics approach to target validation and rational drug design. Mol Cancer Ther 2:283–294

    PubMed  CAS  Google Scholar 

  • Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14:369–381

    Article  PubMed  CAS  Google Scholar 

  • Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226:352–364

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Wang F, Di M, Huang Q, Wang M, Hu H, Jin Y, Dong J, Lai M (2007a) Classification based on the combination of molecular and pathologic predictors is superior to molecular classification on prognosis in colorectal carcinoma. Clin Cancer Res 13:5082–5088

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Li W, Fan X, Liang Y, Zhao M, Zhang J, Liang Y, Tong W, Wang J, Yang W, Lu Y (2007b) Identification and characterization of a novel p42.3 gene as tumor-specific and mitosis phase-dependent expression in gastric cancer. Oncogene 26:7371–7379

    Article  PubMed  CAS  Google Scholar 

  • Zeng JZ, Wang HY, Chen ZJ, Ullrich A, Wu MC (2002) Molecular cloning and characterization of a novel gene which is highly expressed in hepatocellular carcinoma. Oncogene 21:4932–4943

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lu C, Shang Z, Xing R, Shi L, Lv Y (2012a) p42.3 gene expression in gastric cancer cell and its protein regulatory network analysis. Theor Biol Med Model 9:53

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Guan XY, Dong B, Zhao M, Wu JH, Tian XY, Hao CY (2012b) Expression of MMP-9 and WAVE3 in colorectal cancer and its relationship to clinicopathological features. J Cancer Res Clin Oncol 138:2035–2044

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science funding (No: 81272765), the Key Project of Capital Medical Development Fund (No: 2009-2095), Capital Characteristic Clinical Application Research (No: Z121107001012083), Beijing Municipal Natural Science Foundation (No: 7122030), Beijing’s Outstanding Talents Subsidy Scheme (215 Program, No: 2009-2-18), Special Project of Beijing “Tens, Hundreds and Thousands” Health Talents and funding from the Beijing Cancer Hospital (No: 10-04).

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Yun Tian or Chun-Yi Hao.

Additional information

Xiu-Yun Tian and Chun-Yi Hao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, XS., Zhang, Y., Guan, XY. et al. p42.3: A promising biomarker for the progression and prognosis of human colorectal cancer. J Cancer Res Clin Oncol 139, 1211–1220 (2013). https://doi.org/10.1007/s00432-013-1434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1434-0

Keywords

Navigation