Skip to main content

Advertisement

Log in

Optical techniques for the noninvasive diagnosis of skin cancer

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this paper is to provide an overview of the most investigated optical diagnostic techniques: optical coherence tomography, fluorescence spectrometry, reflectance spectrometry, Raman spectroscopy, and confocal microscopy.

Methods

A search of three databases was conducted using specific keywords and explicit inclusion and exclusion criteria for the analysis of the performances of these techniques in the pre- and postoperative diagnosis of skin cancers.

Results

Optical coherence tomography has shown promising results in the assessment of deep margins of skin tumors and inflammatory skin diseases, but differentiating premalignant from malignant lesions proved to be less effective. Fluorescence spectroscopy proved to be effective in revealing the biochemical composition of tissue; early detection of malignant melanoma was reliable only with stepwise two-photon excitation of melanin, while tumoral margin assessment and differential diagnosis between malignant and non-malignant lesions showed some conflicting results. Characterization of the structural properties of tissue can be made using diffuse reflectance spectrometry, and the values of the specificity and sensitivity of this method are ranging between 72–92 % and 64–92 %, respectively. Raman spectroscopy proved to have better results both in carcinoma and melanoma diagnosis with sensitivities and specificities above 90 % and high above 50 %, respectively. Confocal microscopy is the closest technique to pathological examination and has gained the most clinical acceptance, despite the need for a standardization of the interpretation algorithm.

Conclusions

In conclusion, these optical techniques proved to be effective in the diagnosis of skin cancer, but further studies are needed in finding the appropriate method or combination of methods that can have wide clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgrimm-Siess V, Massone C, Scope A, Fink-Puches R, Richtig E, Wolf IH, Koller S, Gerger A, Smolle J, Hofmann-Wellenhof R (2009) Reflectance confocal microscopy of facial lentigo maligna and lentigo maligna melanoma: a preliminary study. Br J Dermatol 161:1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Alex A, Weingast J, Hofer B, Eibl M, Binder M, Pehamberger H, Drexler W, Povazay B (2011) 3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers. Imaging Med 6:653–674

    Article  Google Scholar 

  • Amjadi M, Coventry BJ, Greenwood JE (2011) Reflectance confocal microscopy in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: a blinded prospective trial. Internet J Plast Surg. doi:10.5580/245d

    Google Scholar 

  • Astner S, Dietterle S, Otberg N, Röwert-Huber HJ, Stockfleth E, Lademann J (2008) Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer. Biomed Opt. doi:10.1117/1.2837411

    Google Scholar 

  • Barton JK, Gossage KW, Xu W, Ranger-Moore JR, Saboda K, Brooks CA, Duckett LD, Salasche SJ, Warneke JA, Alberts DS (2003) Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study. Technol Cancer Res Treat 2:525–535

    PubMed  CAS  Google Scholar 

  • Bijlsma WR, Stilma JS (2005) Optical coherence tomography, an important new tool in the investigation of the retina. Ned Tijdschr Geneeskd 149:1884–1891

    PubMed  CAS  Google Scholar 

  • Borisova E, Pavlova P, Pavlova E, Troyanova P, Avramov L (2012) Optical biopsy of human skin—a tool for cutaneous tumours’ diagnosis. Int J Bioautomation 16(1):53–72

    Google Scholar 

  • Canpolat M, Akman A, Çiftçioğlu MA, Alpsoy E (2007) Detecting skin malignancy using elastic light scattering spectroscopy. In: Schweitzer D, Fitzmaurice M (eds) Diagnostic optical spectroscopy in biomedicine IV. Proceedings of the SPIE, vol 6628, p 66280K

  • Canpolat M, Akman-Karakaş A, Gökhan-Ocak GA, Başsorgun IC, Akif Çiftçioğlu M, Alpsoy E (2012) Diagnosis and demarcation of skin malignancy using elastic light single-scattering spectroscopy: a pilot study. Dermatol Surg 38(2):215–223. doi:10.1111/j.1524-4725.2011.02174.x

    Article  PubMed  CAS  Google Scholar 

  • Cartaxo SB, Santos ID, Bitar R, Oliveira AF, Ferreira LM, Martinho HS, Martin A (2010) FT-Raman spectroscopy for the differentiation between cutaneous melanoma and pigmented nevus. Acta Cir Bras 25:351–356

    Article  PubMed  Google Scholar 

  • Chen Y, Aguirre AD, Hsiung PL, Desai S, Herz PR, Pedrosa M, Huang Q, Figueiredo M, Huang SW, Koski A, Schmitt JM, Fujimoto JG, Mashimo H (2007) Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy 39:599–605

    Article  PubMed  CAS  Google Scholar 

  • Curiel-Lewandrowski C, Williams C, Swindells K, Tahan SR et al (2004) Use of in vivo confocal microscopy in malignant melanoma: an aid in diagnosis, assessment of surgical, nonsurgical therapeutic approaches. Arch Dermatol 140:1127–1132

    Article  PubMed  Google Scholar 

  • de Paula AR, Sathaiah S (2005) Raman spectroscopy for diagnosis of atherosclerosis: a rapid analysis using neural networks. Med Eng Phys 27:237–244

    Article  PubMed  Google Scholar 

  • de Siqueira EOFS, Giana HE, Silveira L (2012) Discrimination of selected species of pathogenic bacteria using near-infrared Raman spectroscopy and principal components analysis. J Biomed Opt 17:107004

    Article  Google Scholar 

  • Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27:45–88

    Article  PubMed  Google Scholar 

  • Eichhorn R, Wessler G, Scholz M, Leupold D, Stankovic G, Buder S, Stücker M, Hoffmann K (2009) Early diagnosis of melanotic melanoma based on laser-induced melanin fluorescence. J Biomed Opt 14:034033

    Article  PubMed  Google Scholar 

  • Farooq MU, Khasnis A, Majid A, Kassab MY (2009) The role of optical coherence tomography in vascular medicine. Vasc Med 14:63–71

    Article  PubMed  Google Scholar 

  • Figurska M, Robaszkiewicz J, Wierzbowska J (2010) Optical coherence tomography in imaging of macular diseases. Klin Oczna 112:138–146

    PubMed  Google Scholar 

  • Framme C, Roider J, Sachs HG, Brinkmann R, Gabel VP (2005) Noninvasive imaging and monitoring of retinal pigment epithelium patterns using fundus autofluorescence- Review. Curr Med Imaging Rev 1:89–103

    Article  Google Scholar 

  • Fried D, Xie J, Shafi S, Featherstone JDB, Breunig TM, Charles L (2002) Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 7:618–627

    Article  PubMed  Google Scholar 

  • Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K (2005) Applications of optical coherence tomography, in dermatology. J Dermatol Sci 40:85–94

    Article  PubMed  Google Scholar 

  • Gambichler T, Moussa G, Altmeyer P (2008) A pilot study of fluorescence diagnosis of basal cell carcinoma using a digital flash light-based imaging system. Photodermatol Photoimmunol Photomed 24:67–71

    Article  PubMed  Google Scholar 

  • Garcia-Uribe A, Smith EB, Zou J, Duvic M, Prieto V, Wang LV (2011) In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry. J Biomed Opt 16:020501

    Article  PubMed  Google Scholar 

  • Garcia-Uribe A, Zou J, Duvic M, Cho-Vega JH, Prieto VG, Wang LV (2012) In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry. Cancer Res 72:2738–2745

    Article  PubMed  CAS  Google Scholar 

  • Gerger A, Koller S, Weger W, Richtig E, Kerl H, Samonigg H, Krippl P, Smolle J (2006) Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 107:193–200

    Article  PubMed  Google Scholar 

  • Gerger A, Hofmann-Wellenhof R, Langsenlehner U, Richtig E, Koller S, Weger W, Ahlgrimm-Siess V, Horn M, Samonigg H, Smolle J (2008) In vivo confocal laser scanning microscopy of melanocytic skin tumours: diagnostic applicability using unselected tumour images. Br J Dermatol 158:329–333

    Article  PubMed  CAS  Google Scholar 

  • Gniadecka M, Philipsen PA, Sigurdsson S, Wessel S, Nielsen OF, Christensen DH, Hercogova J, Rossen K, Thomsen HK, Gniadecki R, Hansen LK, Wulf HC (2004) Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J Invest Dermatol 122:443–449

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S (2009) Confocal reflectance microscopy in dermatology: promise and reality of non-invasive diagnosis and monitoring. Actas Dermosifiliogr 100:59–69

    Article  PubMed  Google Scholar 

  • Guitera P, Pellacani G, Crotty KA, Scolyer RA, Li LXL, Bassoli S, Vinceti M, Rabinovitz H, Longo C, Menzies SW (2010) The impact of in vivo reflectance confocal microscopy on the diagnostic accuracy of lentigo maligna and equivocal pigmented and nonpigmented macules of the face. J Invest Dermatol 130:2080–2091

    Article  PubMed  CAS  Google Scholar 

  • Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari RR, Crowe JP, Feld MS (2006) In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy. Cancer Res 66:3317–3322

    Article  PubMed  CAS  Google Scholar 

  • He X, Wang K, Cheng Z (2010) In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Nanomed Nanobiotechnol 2:349–366

    Article  CAS  Google Scholar 

  • Hicks SP, Swindells KJ, Middelkamp-Hup MA, Sifakis MA, Gonzalez E, Gonzalez S (2003) Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs white). J Am Acad Dermatol 48:727–734

    Article  PubMed  Google Scholar 

  • Hinz T, Ehler LK, Hornung T, Voth H, Fortmeier I, Maier T, Höller T, Schmid-Wendtner MH (2011) Preoperative characterization of basal cell carcinoma comparing tumour thickness measurement by optical coherence tomography, 20-MHz ultrasound and histopathology. Acta Derm Venereol 92(2):132–137. doi:10.2340/00015555-1231

    Google Scholar 

  • Huang Z, Zeng H, Hamzavi I, Alajlan A, Tan E, McLean DI, Lui H (2006) Cutaneous melanin exhibiting fluorescence emission under near-infrared light excitation. J Biomed Opt 11:34010

    Article  PubMed  Google Scholar 

  • Jiao Y, Upile T, Jerjes W, Rhadi H, Mosse S, Bown SG, Hopper C (2009) Interrogation of skin pathology using elastic scattering spectroscopy. Head Neck Oncol 1(Suppl 1):O19. doi:10.1186/1758-3284-1-S1-O19

    Article  Google Scholar 

  • Jorgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GBE (2008) Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol 14:364–369. doi:10.1111/j.1600-0846.2008.00304.x

    Article  PubMed  Google Scholar 

  • Kalasinsky KS, Hadfield T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, Drauch AJ, Vanni GS, Treado PJ (2007) Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. Anal Chem 79:658–2673

    Article  Google Scholar 

  • Kamrava SK, Behtaj M, Ghavami Y, Shahabi S, Jalessi M, Afshar EE, Maleki S (2012) Evaluation of diagnostic values of photodynamic diagnosis in identifying the dermal and mucosal squamous cell carcinoma. Photodiagnosis Photodyn Ther. doi:10.1016/j.pdpdt.2012.03.004

    PubMed  Google Scholar 

  • Keller MD, Vargis E, Granja NM, Wilson RH, Mycek MA, Kelley MC, Mahadevan-Jansen A (2011) Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation. J Biomed Opt. doi:10.1117/1.3600708

    Google Scholar 

  • Kleinpenning MM, Wolberink EW, Smits T, Blokx WA, van De Kerkhof PC, van Erp PE, Gerritsen RM (2010) Fluorescence diagnosis in actinic keratosis and squamous cell carcinoma. Photodermatol Photoimmunol Photomed 26:297–302. doi:10.1111/j.1600-0781.2010.00546.x

    Article  PubMed  Google Scholar 

  • Korde VR, Bonnema GT, Xu W, Krishnamurthy C, Ranger-Moore J, Saboda K, Slayton LS, Salasche SJ, Warneke JA, Alberts DS, Barton JK (2007) Using optical coherence tomography to evaluate skin sun damage and precancer. Laser Surg Med 39:687–695

    Article  Google Scholar 

  • Langley RG, Burton E, Walsh N, Propperova I, Murray SJ (2006) In vivo confocal scanning laser microscopy of benign lentigines: comparison to conventional histology and in vivo characteristics of lentigo maligna. J Am Acad Dermatol 55:88–97

    Article  PubMed  Google Scholar 

  • Langley RG, Walsh N, Sutherland AE, Propperova I, Delaney L, Morris SF, Gallant C (2007) The diagnostic accuracy of in vivo confocal scanning laser microscopy compared to dermoscopy of benign and malignant melanocytic lesions: a prospective study. Dermatology 215:365–372

    Article  PubMed  Google Scholar 

  • Larraona-Puy M, Ghita A, Zoladek A, Perkins W, Varma S, Leach IH, Koloydenko AA, Williams H, Notingher I (2009) Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J Biomed Opt 14:31–54

    Article  Google Scholar 

  • Leeuw J, van der Beek N, Neugebauer WD, Bjerring P, Neumann HAM (2009) Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage. Laser Surg Med 41:96–103

    Article  Google Scholar 

  • Leupold D, Scholz M, Stankovic G, Reda J, Buder S, Eichhorn R, Wessler G, Stücker M, Hoffmann K, Bauer J, Garbe C (2011) The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes. Pigment Cell Melanoma Res 24:438–445. doi:10.1111/j.1755-148X.2011.00853.x

    Article  PubMed  Google Scholar 

  • Lieber CA, Majumder SK, Ellis DL, Billheimer DD, Mahadevan-Jansen A (2008) A In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Laser Surg Med 40:461–467

    Article  Google Scholar 

  • Lihachev A, Rozniece K, Lesins J, Spigulis J (2011) Photobleaching measurements of pigmented and vascular skin lesions: results of a clinical trial. In: Ramanujam N, Popp J (eds) Clinical and biomedical spectroscopy and imaging II, Proceedings of SPIE-OSA Biomedical Optics, SPIE, vol 8087, p 80872F

  • Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T (2009) Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-ptv system. Ann Biomed Eng 37:1546–1559

    Article  PubMed  Google Scholar 

  • Liutkeviciute-Navickiene J, Mordas A, Rutkovskiene L, Bloznelyte-Plesniene L (2008) Skin and mucosal fluorescence diagnosis with different light sources. Eur J Dermatol 19:135–140

    PubMed  Google Scholar 

  • Lui H, Zhao J, McLean D, Zeng H (2012) Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res 72:2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Braun-Falco M, Hinz T, Schmid-Wendtner MH, Ruzicka T, Berking C (2012) Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology. J Eur Acad Dermatol Venereol. doi:10.1111/j.1468-3083.2012.04551.x

    Google Scholar 

  • Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, Jemec GB (2009) Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 35:965–972

    Article  PubMed  CAS  Google Scholar 

  • Morales AAM, Montiel SV (2012) Retrieving the optical parameters of biological tissues using diffuse reflectance spectroscopy and Fourier series expansions. I. Theory and application. Biomed Opt Express 3(10):2395–2404

    Article  Google Scholar 

  • Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, Galindo LH, Dasari RR, Kramer JR (2006) In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. J Biomed Opt. doi:10.1117/1.2190967

    Google Scholar 

  • Murphy BW, Webster RJ, Turlach BA, Quirk CJ, Clay CD, Heenan PJ, Sampson DD (2005) Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy. J Biomed Opt 10(6):064020

    Article  PubMed  Google Scholar 

  • Neus S, Gambichler T, Bechara FG, Wöhl S, Lehmann P (2008) Preoperative assessment of basal cell carcinoma using conventional fluorescence diagnosis. Arch Dermatol Res 301:289–294

    Article  PubMed  Google Scholar 

  • Nunes LO, Martin AA, Silveira L Jr, Zampieri M (2003) FT-Raman spectroscopy study for skin cancer diagnosis. Spectroscopy 17:597–602

    Article  CAS  Google Scholar 

  • Oliveira AF, Santos ID, Cartaxo SB, Bitar RA, Enokihara MM, Martinho Hda S, Martin AA, Ferreira LM (2010) Differential diagnosis in primary and metastatic cutaneous melanoma by FT-Raman spectroscopy. Acta Cir Bras 25:434–439

    Article  PubMed  Google Scholar 

  • Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2006) Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol 55:408–412

    Article  PubMed  Google Scholar 

  • Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL (2007) Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatol Surg 33:421–426. doi:10.1111/j.1524-4725.2007.33088.x

    Article  PubMed  CAS  Google Scholar 

  • Otis LL, al-Sadhan RI, Meiers J, Redford-Badwal D (2003) Identification of occlusal sealants using optical coherence tomography. J Clin Dent 14:7–10

    PubMed  Google Scholar 

  • Pellacani G, Guitera P, Longo C, Avramidis M, Seidenari S, Menzies S (2007) The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J Invest Dermatol 127:2759–2765

    PubMed  CAS  Google Scholar 

  • Pellacani G, Longo C, Malvehy J, Puig S, Carrera C, Segura S, Bassoli S, Seidenari S (2008) In vivo confocal microscopic and histopathologic correlations of dermoscopic features in 202 melanocytic lesions. Arch Dermatol 144:1597–1608

    Article  PubMed  Google Scholar 

  • Pyrgiotakis G, Kundakcioglu OE, Finton K, Papardalos PM, Powers K, Moudgil BM (2009) Cell death discrimination with raman spectroscopy and support vector machines. Ann Biomed Eng 37:1464–1473

    Article  PubMed  Google Scholar 

  • Qiang T, Chang C (2012) Diagnostic applications of Raman spectroscopy, nanomedicine: nanotechnology. Biol Med 8:545–558

    Google Scholar 

  • Rajaram N, Reichenberg JS, Migden MR, Nguyen TH, Tunnell JW (2010) Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer. Laser Surg Med 42:716–727

    Google Scholar 

  • Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnostics. Annu Rev Phys Chem 47:555–606

    Article  PubMed  CAS  Google Scholar 

  • Rigby PJ, Goldie RG (1999) Confocal microscopy in biomedical research. Croat Med J 40:346–352

    PubMed  CAS  Google Scholar 

  • Rocha R, Silveira L Jr, Villaverde AB, Pasqualucci CA, Costa MS, Brugnera A Jr, Pacheco MT (2007) Use of near-infrared Raman spectroscopy for identification of atherosclerotic plaques in the carotid artery. Photomed Laser Surg 25:482–486

    Article  PubMed  CAS  Google Scholar 

  • Schmitt JM, Yadlowsly MJ, Bonner RF (1995) Subsurface imaging of living skin with optical coherence microscopy. Dermatology 191:93–98

    Article  PubMed  CAS  Google Scholar 

  • Scope A, Mahmood U, Gareau DS, Kenkre M, Lieb JA, Nehal KS, Rajadhyaksha M (2010) In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins. Br J Dermatol 163:1218–1228

    Article  PubMed  CAS  Google Scholar 

  • Silveira L Jr, Silveira FL, Bodanese B, Zângaro RA, Tadeu M, Pacheco T (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt. doi:10.1117/1.JBO.17.7.077003

    Google Scholar 

  • Sivak MV Jr, Kobayashi K, Izatt JA, Rollins AM, Ung-Runyawee R, Chak A, Wong RC, Isenberg GA, Willis J (2000) High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointest Endosc 51:474–479

    Article  PubMed  Google Scholar 

  • Swindells K, Burnett N, Rius-Diaz F, Gonzalez E, Mihm MC, Gonzalez S (2004) Reflectance confocal microscopy may differentiate acute allergic and irritant contact dermatitis in vivo. J Am Acad Dermatol 50:220–228

    Article  PubMed  Google Scholar 

  • Thompson AJ, Coda S, Sørensen MB, Kennedy G, Patalay R, Waitong-Brämming U, De Beule PAA, Neil MAA, Andersson-Engels S, Bendsøe N, French PMW, Svanberg K, Dunsby C (2012) In vivo measurements of diffuse reflectance and time-resolved autofluorescence emission spectra of basal cell carcinomas. J Biophoton 5:240–254. doi:10.1002/jbio.201100126

    Article  Google Scholar 

  • Troyanova P, Borisova E, Avramov L (2007) Fluorescence and reflectance properties of hemoglobin-pigmented skin disorders. Proceedings of SPIE 6734, 673415. doi:10.1117/12.753139

  • Ulrich M, Maltusch A, Rius-Diaz F, Rowert-Huber J et al (2008) Clinical applicability of in vivo reflectance confocal microscopy for the diagnosis of actinic keratoses. Dermatol Surg 34:610–619

    Article  PubMed  CAS  Google Scholar 

  • Ulrich M, Krueger-Corcoran D, Roewert-Huber J, Sterry W, Stockfleth E, Astner S (2010) Reflectance confocal microscopy for noninvasive monitoring of therapy and detection of subclinical actinic keratoses. Dermatology 220:15–24

    Article  PubMed  CAS  Google Scholar 

  • Ulrich M, Lange-Asschenfeldt S, Gonzalez S (2012a) Clinical applicability of in vivo reflectance confocal microscopy in dermatology. G Ital Dermatol Venereol 147:171–178

    PubMed  CAS  Google Scholar 

  • Ulrich M, Lange-Asschenfeldt S, Gonzalez S (2012b) The use of reflectance confocal microscopy for monitoring response to therapy of skin malignancies. Dermatol Pract Concept. doi:10.5826/dpc.0202a10

    Google Scholar 

  • Upile T, Jerjes W, Radhi H, Mahil J, Rao A, Hopper C (2012) Elastic scattering spectroscopy in assessing skin lesions: an “in vivo” study. Photodiagnosis Photodyn Ther 9:132–141

    Article  PubMed  Google Scholar 

  • van der Beek N, Leeuw J, Demmendal C, Bjerring P, Neumann HAM (2012) PpIX fluorescence combined with auto-fluorescence is more accurate than PpIX fluorescence alone in fluorescence detection of non-melanoma skin cancer: an intra-patient direct comparison study. Laser Surg Med 44:271–276

    Article  Google Scholar 

  • Wang L, Jacques SL (1995) Monte Carlo modelling of light transport in multi-layered tissues in standard C. Comput Methods Programs Biomed 47:131–146

    Article  PubMed  CAS  Google Scholar 

  • Wetzig T, Kendler M, Maschke J, Paasch U, Simon JC (2010) No clinical benefit of preoperative fluorescence diagnosis of basal cell carcinoma localized in the H-zone of the face. Br J Dermatol 162:1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Won Y, Hong SH, Yu HY, Kwon YH, Yun SJ, Lee SC, Lee JB (2007) Photodetection of basal cell carcinoma using methyl 5-aminolaevulinate-induced protoporphyrin IX based on fluorescence image analysis. Clin Exp Dermatol 32:423–429

    Article  PubMed  CAS  Google Scholar 

  • Yudovsky D, Laurent Pilon L (2010) Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl Opt 49:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Lui H, McLean DI (2011) Skin cancer detection using in vivo Raman spectroscopy. SPIE Newsroom. doi:10.1117/2.1201104.003705

    Google Scholar 

  • Zhao J, Lui H, McLean DI, Zeng H (2008) Real-time Raman spectroscopy for non-invasive skin cancer detection—preliminary results. Conf Proc IEEE Eng Med Biol Soc 2008:3107–3109. doi:10.1109/IEMBS.2008.4649861

    PubMed  Google Scholar 

  • Zonios G, Bykowski J, Kollias N (2001) Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol 117:1452–1457

    Article  PubMed  CAS  Google Scholar 

  • Zonios G, Dimou A, Bassukas I, Galaris D, Tsolakidis A, Kaxiras E (2008) Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J Biomed Opt 13:014017-1–014017-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Ministry of Education, Research, Youth and Sport by means of the Research Program no. PN II PCCA 184/2012.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Antonina Calin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calin, M.A., Parasca, S.V., Savastru, R. et al. Optical techniques for the noninvasive diagnosis of skin cancer. J Cancer Res Clin Oncol 139, 1083–1104 (2013). https://doi.org/10.1007/s00432-013-1423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1423-3

Keywords

Navigation