Skip to main content

Advertisement

Log in

Cilengitide affects tumor compartment, vascularization and microenvironment in experimental bone metastases as shown by longitudinal 18F-FDG PET and gene expression analysis

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Aim of this study was to investigate the specific treatment effects of inhibiting αvβ3/αvβ5 integrins by cilengitide in an animal model of breast cancer bone metastases using dynamic 18F-FDG PET and gene expression analysis.

Methods

For this purpose, nude rats bearing bone metastases were treated with cilengitide, a small molecule inhibitor of αvβ3 and αvβ5 integrins, from day 30 to 55 after tumor cell inoculation of MDA-MB-231 breast cancer cells (25 mg/kg, 5 days per week; n = 8 rats) and compared to control rats (n = 8). Dynamic 18F-FDG PET data were assessed at days 30, 35 and 55 after tumor cell inoculation determining the vascular fraction VB and the metabolic variables k1–k4. At day 55, genome-wide mRNA expression analysis was performed to assess the treatment-specific expression changes from cilengitide-treated and control rats.

Results

In a longitudinal 18F-FDG PET study, the vascular fraction VB was significantly decreased in bone metastases between days 30/35, 30/55 and 35/55, whereas the kinetic parameters k1 and k4 were significantly decreased between days 30/55 in skeletal lesions of treated animals. Gene expression analysis from bone metastases at day 55 revealed that tumor-produced integrins (αvβ5) as well as factors relevant for angiogenesis (αvβ3, VEGF, PDGF), bone resorption (PTHrP and RANKL), extracellular matrix remodeling (collagen, CD44) and bone marrow microenvironment (CXCR4) were significantly reduced upon therapy with cilengitide.

Conclusions

Here, we provide evidence that cilengitide inhibits pivotal factors of all compartments of bone metastases including tumor cells, vasculature and bone microenvironment in vivo and by whole-genome transcriptome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alghisi GC, Ponsonnet L, Ruegg C (2009) The integrin antagonist cilengitide activates αvβ3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS ONE 4:e4449

    Article  PubMed  Google Scholar 

  • Bäuerle T, Adwan H, Kiessling F, Hilbig H, Armbruster FP, Berger MR (2005) Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer 115:177–186

    Article  PubMed  Google Scholar 

  • Bäuerle T, Merz M, Komljenovic D, Zwick S, Semmler W (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16:3215–3225

    Article  PubMed  Google Scholar 

  • Bäuerle T, Komljenovic D, Merz M, Berger MR, Goodman SL, Semmler W (2011) Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged non-invasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer 128:2453–2462

    Article  PubMed  Google Scholar 

  • Beekman KW, Colevas AD, Cooney K, Dipaola R, Dunn RL, Gross M, Keller ET, Pienta KJ, Ryan CJ, Smith D, Hussain M (2006) Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin Genitourin Cancer 4:299–302

    Article  PubMed  CAS  Google Scholar 

  • Bretschi M, Merz M, Komljenovic D, Berger MR, Semmler W, Bäuerle T (2011) Cilengitide inhibits metastatic bone colonization in a nude rat model. Oncol Rep 26:843–851

    PubMed  CAS  Google Scholar 

  • Brown JE, Coleman RE (2011) Denosumab in patients with cancer-a surgical strike against the osteoclast. Nat Rev Clin Oncol 9:110–118

    Article  Google Scholar 

  • Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL (2002) Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29:443–453

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Komljenovic D, Pan L, Dimitrakopoulou-Strauss A, Strauss L, Bäuerle T (2011) Evaluation of treatment response of cilengitide in an experimental model of breast cancer bone metastasis using dynamic PET with 18F-FDG. Hell J Nucl Med 14:15–20

    PubMed  Google Scholar 

  • Clezardin P (2009) Integrins in bone metastasis formation and potential therapeutic implications. Curr Cancer Drug Targets 9:801–806

    Article  PubMed  CAS  Google Scholar 

  • Clezardin P (2011) Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res 13:207

    Article  PubMed  CAS  Google Scholar 

  • Curtis TM, McKeown-Longo PJ, Vincent PA, Homan SM, Wheatley EM, Saba TM (1995) Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-α5β1, or TNF-alpha exposure. Am J Physiol 269:L248–L260

    PubMed  CAS  Google Scholar 

  • De S, Razorenova O, McCabe NP, O’Toole T, Qin J, Byzova TV (2005) VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci USA 102:7589–7594

    Article  PubMed  CAS  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn U, Hoffend J, Schmidt K, Altmann A, Bonaterra GA, Dimitrakopoulou Strauss A, Strauss LG, Eisenhut M, Kinscherf R (2007) Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma. Eur J Nucl Med Mol Imaging 34:2011–2023

    Article  PubMed  CAS  Google Scholar 

  • Iorns E, Clarke J, Ward T, Dean S, Lippman M (2012) Simultaneous analysis of tumor and stromal gene expression profiles from xenograft models. Breast Cancer Res Treat 131:321–324

    Article  PubMed  Google Scholar 

  • Li N, Zhang JP, Guo S, Min J, Liu LL, Su HC, Feng YM, Zhang HL (2012) Down-regulation of β3-integrin inhibits bone metastasis of small cell lung cancer. Mol Biol Rep 39:3029–3035

    Article  PubMed  CAS  Google Scholar 

  • Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem 10:753–768

    Article  PubMed  CAS  Google Scholar 

  • Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U, Ruiter DJ, De Waal RM (1997) Immunohistochemical analysis of integrin αvβ3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 71:320–324

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Marshall JF, Hart IR (1998) Expression of αv integrins and vitronectin receptor identity in breast cancer cells. Br J Cancer 77:530–536

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  PubMed  CAS  Google Scholar 

  • Nemeth JA, Cher ML, Zhou Z, Mullins C, Bhagat S, Trikha M (2003) Inhibition of αvβ3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin Exp Metastasis 20:413–420

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Mikolajczyk K, Strauss LG (2007) Machine learning based parameter imaging and kinetic modelling of PET data. J Nucl Med 48(suppl 2):158

    Google Scholar 

  • Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, Margue C, Cohen-Solal M, Buffet A, Kieffer N, Clezardin P (2002) Integrin αvβ3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J 16:1266–1268

    PubMed  CAS  Google Scholar 

  • Pedersen MW, Holm S, Lund EL, Hojgaard L, Kristjansen PE (2001) Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro. Neoplasia 3:80–87

    Article  PubMed  CAS  Google Scholar 

  • Reardon DA, Neyns B, Weller M, Tonn JC, Nabors LB, Stupp R (2011) Cilengitide: an RGD pentapeptide αvβ3 and αvβ5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol 7:339–354

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, Da Violante G, Gourlaouen M, Salih M, Jones MC, Jones DT, Saunders G, Kostourou V, Perron-Sierra F, Norman JC, Tucker GC, Hodivala-Dilke KM (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15:392–400

    Article  PubMed  CAS  Google Scholar 

  • Shimamura N, Matchett G, Solaroglu I, Tsubokawa T, Ohkuma H, Zhang J (2006) Inhibition of integrin αvβ3 reduces blood-brain barrier breakdown in focal ischemia in rats. J Neurosci Res 84:1837–1847

    Article  PubMed  CAS  Google Scholar 

  • Strauss LG, Koczan D, Klippel S, Pan L, Cheng C, Willis S, Haberkorn U, Dimitrakopoulou-Strauss A (2008) Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors. J Nucl Med 49:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Strauss LG, Hoffend J, Koczan D, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A (2009) Early effects of FOLFOX treatment of colorectal tumour in an animal model: assessment of changes in gene expression and FDG kinetics. Eur J Nucl Med Mol Imaging 36:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • van der Horst G, van den Hoogen C, Buijs JT, Cheung H, Bloys H, Pelger RC, Lorenzon G, Heckmann B, Feyen J, Pujuguet P, Blanque R, Clement-Lacroix P, van der Pluijm G (2011) Targeting of αv-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia 13:516–525

    PubMed  Google Scholar 

  • Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R, Clement-Lacroix P, Clezardin P (2007) Tumor αvβ3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67:5821–5830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Karin Leotta and Lisa Seyler for excellent technical assistance and Merck-Serono for providing cilengitide. For financial support, we thank the Deutsche Forschungsgemeinschaft (T.B., BA 4027/4-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Bäuerle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretschi, M., Cheng, C., Witt, H. et al. Cilengitide affects tumor compartment, vascularization and microenvironment in experimental bone metastases as shown by longitudinal 18F-FDG PET and gene expression analysis. J Cancer Res Clin Oncol 139, 573–583 (2013). https://doi.org/10.1007/s00432-012-1360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1360-6

Keywords

Navigation