Skip to main content

Advertisement

Log in

VP22 and cytosine deaminase fusion gene modified tissue-engineered neural stem cells for glioma therapy

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The herpes simplex virus type 1 tegument protein VP22 has the remarkable property of intercellular trafficking, thus making it a promising tool for improving gene transfer efficiency.

Methods

To investigate whether the fusion of VP22 to the cytosine deaminase (CD) suicide gene could enhance the therapeutic efficiency of neural stem cells (NSCs) in the treatment for C6 glioma, the lentiviral vectors pHIV-VP22-EGFP, pHIV-CD, and pHIV-VP22-CD were constructed based on the pHIV-EGFP vector. After packaging, vectors were transduced into rat NSCs.

Results

Fluorescence-activated cell sorting analysis revealed that the fusion of VP22-EGFP increased the expression rate of EGFP in NSCs compared with lenti-EGFP transduced cells. Under incubation with the prodrug 5-fluorocytosine (5-FC), the survival rates of C6 cells co-cultured with NSCs/VP22-CD (NSCs transduced with lenti-VP22-CD) decreased tremendously compared with those of C6 and NSCs/CD. Similar results were also observed in vivo; a significant reduction in tumor volumes in C6 glioma-bearing rats was observed in the NSCs/VP22-CD therapy group when compared with other control groups.

Conclusions

Our results reveal that VP22 increases the transduction efficiency of lentivirus into NSCs and enhances the therapeutic efficacy of CD-engineered rat NSCs in the treatment for C6 glioma, demonstrating that VP22 might be a useful tool for the gene therapy of engineered NSCs and providing a potential novel strategy for enhancing the effectiveness of gene therapy in other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15:739–752

    Article  PubMed  CAS  Google Scholar 

  • Ahmed AU, Lesniak MS (2011) Glioblastoma multiforme: can neural stem cells deliver the therapeutic payload and fulfill the clinical promise? Expert Rev Neurother 11:775–777

    Article  PubMed  Google Scholar 

  • Barresi V, Belluardo N, Sipione S, Mudo G, Cattaneo E, Condorelli DF (2003) Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther 10:396–402

    Article  PubMed  CAS  Google Scholar 

  • Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, Galli R, Selleri S, Di Meco F, De Fraja C, Vescovi A, Cattaneo E, Finocchiaro G (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6:447–450

    Article  PubMed  CAS  Google Scholar 

  • Binello E, Germano IM (2012) Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro Oncol 14:256–265

    Article  PubMed  CAS  Google Scholar 

  • Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    Article  PubMed  CAS  Google Scholar 

  • Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53:5274–5283

    PubMed  CAS  Google Scholar 

  • Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H (2005) Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 25:2637–2646

    Article  PubMed  CAS  Google Scholar 

  • Huber BE, Austin EA, Richards CA, Davis ST, Good SS (1994) Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 91:8302–8306

    Article  PubMed  CAS  Google Scholar 

  • Jin GS, Liu FS, Chai Q, Wang JJ, Li JH (2008) Stable EGFP gene expression in C6 glioma cell line after transduction with HIV-1-based lentiviral vector. Chin J Cancer Res 20:243–248

    Article  CAS  Google Scholar 

  • Kretz A, Wybranietz WA, Hermening S, Lauer UM, Isenmann S (2003) HSV-1 VP22 augments adenoviral gene transfer to CNS neurons in the retina and striatum in vivo. Mol Ther 7:659–669

    Article  PubMed  CAS  Google Scholar 

  • Lai Z, Han I, Zirzow G, Brady RO, Reiser J (2000) Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors. Proc Natl Acad Sci USA 97:11297–11302

    Article  PubMed  CAS  Google Scholar 

  • Lee KC, Hamstra DA, Bullarayasamudram S, Bhojani MS, Moffat BA, Dornfeld KJ, Ross BD, Rehemtulla A (2006) Fusion of the HSV-1 tegument protein vp22 to cytosine deaminase confers enhanced bystander effect and increased therapeutic benefit. Gene Ther 13:127–137

    Article  PubMed  CAS  Google Scholar 

  • Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422

    Article  PubMed  CAS  Google Scholar 

  • Liu CS, Kong B, Xia HH, Ellem KA, Wei MQ (2001) VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death. J Gene Med 3:145–152

    Article  PubMed  CAS  Google Scholar 

  • Lobanov VA, Zheng C, Babiuk LA, van Drunen LDHS (2010) Intracellular trafficking of VP22 in bovine herpesvirus-1 infected cells. Virology 396:189–202

    Article  PubMed  CAS  Google Scholar 

  • Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 46:4109–4115

    PubMed  CAS  Google Scholar 

  • Oh MC, Lim DA (2009) Novel treatment strategies for malignant gliomas using neural stem cells. Neurotherapeutics 6:458–464

    Article  PubMed  CAS  Google Scholar 

  • Phelan A, Elliott G, O’Hare P (1998) Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 16:440–443

    Article  PubMed  CAS  Google Scholar 

  • Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY (2012) Primary brain tumours in adults. Lancet 379:1984–1996

    Article  PubMed  Google Scholar 

  • Sathornsumetee S, Rich JN (2008) Designer therapies for glioblastoma multiforme. Ann NY Acad Sci 1142:108–132

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai G, Wick W, Weller M (2011) Stem cell-mediated gene therapies for malignant gliomas: a promising targeted therapeutic approach? Discov Med 11:529–536

    PubMed  Google Scholar 

  • Tanaka M, Kato A, Satoh Y, Ide T, Sagou K, Kimura K, Hasegawa H, Kawaguchi Y (2012) Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence. J Virol 86:5264–5277

    Article  PubMed  CAS  Google Scholar 

  • Thaci B, Ahmed AU, Ulasov IV, Tobias AL, Han Y, Aboody KS, Lesniak MS (2012) Pharmacokinetic study of neural stem cell-based cell carrier for oncolytic virotherapy: targeted delivery of the therapeutic payload in an orthotopic brain tumor model. Cancer Gene Ther 19:431–442

    Article  PubMed  CAS  Google Scholar 

  • Ubiali F, Nava S, Nessi V, Frigerio S, Parati E, Bernasconi P, Mantegazza R, Baggi F (2007) Allorecognition of human neural stem cells by peripheral blood lymphocytes despite low expression of MHC molecules: role of TGF-beta in modulating proliferation. Int Immunol 19:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  • Wybranietz WA, Prinz F, Spiegel M, Schenk A, Bitzer M, Gregor M, Lauer UM (1999) Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines. J Gene Med 1:265–274

    Article  PubMed  CAS  Google Scholar 

  • Yazawa K, Fisher WE, Brunicardi FC (2002) Current progress in suicide gene therapy for cancer. World J Surg 26:783–789

    Article  PubMed  Google Scholar 

  • Yuan X, Hu J, Belladonna ML, Black KL, Yu JS (2006) Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66:2630–2638

    Article  PubMed  CAS  Google Scholar 

  • Zavaglia D, Favrot MC, Eymin B, Tenaud C, Coll JL (2003) Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein. Gene Ther 10:314–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (#30640073), the Beijing Municipal Natural Science Foundation (#5063040), and the Scientific Research Foundation for Returned Scholars (#1108).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, G., Zhou, Y., Chai, Q. et al. VP22 and cytosine deaminase fusion gene modified tissue-engineered neural stem cells for glioma therapy. J Cancer Res Clin Oncol 139, 475–483 (2013). https://doi.org/10.1007/s00432-012-1347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1347-3

Keywords

Navigation