Skip to main content
Log in

Systematic analysis and validation of differential gene expression in ovarian serous adenocarcinomas and normal ovary

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cancer of the ovary confers the worst prognosis among women with gynecological malignancies, primarily because most ovarian cancers are diagnosed at late stage. Hence, there is a substantial need to develop new diagnostic biomarkers to enable detection of ovarian cancer at earlier stages, which would confer better prognosis. In addition, the identification of druggable targets is of substantial interest to find new therapeutic strategies for ovarian cancer.

Methods

The expression of 22,500 genes in a series of 67 serous papillary carcinomas was compared with 9 crudely enriched normal ovarian tissue samples by RNA hybridization on oligonucleotide microarrays. Multiple genes with near-uniformly expression were elevated in carcinomas of varying grade and malignant potential, including several previously described genes (e.g., MUC-1, CD9, CD24, claudin 3, and mesothelin). We performed immunohistochemical staining with antibodies against several of the proteins encoded by differentially expressed genes in an independent cohort of 71 cases of paraffin-embedded ovarian cancer samples.

Results

We found striking differences in EpCAM (p < 0.005), CD9 (p < 0.001), MUC-1 (p < 0.001), and claudin 3 proteins (p < 0.001) but not for mesothelin (p > 0.05) using the Mann–Whitney U test.

Conclusions

Protein expression of a majority of the differentially expressed genes tested was found to be elevated in ovarian carcinomas and, as such, define potential new biomarkers or targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auersperg N (2011) The origin of ovarian carcinomas: a unifying hypothesis. Int J Gynecol Pathol 30(1):12–21

    Article  PubMed  Google Scholar 

  • Bast RC Jr (2003) Status of tumor markers in ovarian cancer screening. J Clin Oncol 21(10 Suppl):200s–205s

    Article  PubMed  Google Scholar 

  • Bauerschlag DO, Ammerpohl O et al (2011) Progression-free survival in ovarian cancer is reflected in epigenetic DNA methylation profiles. Oncology 80(1–2):12–20

    Article  PubMed  CAS  Google Scholar 

  • Brakora KA, Lee H et al (2004) Utility of osteopontin as a biomarker in recurrent epithelial ovarian cancer. Gynecol Oncol 93(2):361–365

    Article  PubMed  CAS  Google Scholar 

  • Budiu RA, Mantia-Smaldone G et al (2011) Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer. Cancer Immunol Immunother 60(7):975–984

    Article  PubMed  CAS  Google Scholar 

  • Burges A, Wimberger P et al (2007) Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM × anti-CD3 antibody: a phase I/II study. Clin Cancer Res 13(13):3899–3905

    Article  PubMed  CAS  Google Scholar 

  • Cristaudo A, Bonotti A et al (2011) Soluble markers for diagnosis of malignant pleural mesothelioma. Biomark Med 5(2):261–273

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Walsh MD et al (1997) Expression of MUC1 and MUC2 mucins in epithelial ovarian tumours. J Pathol 183(3):311–317

    Article  PubMed  CAS  Google Scholar 

  • El-Sahwi K, Bellone S et al (2010) Overexpression of EpCAM in uterine serous papillary carcinoma: implications for EpCAM-specific immunotherapy with human monoclonal antibody adecatumumab (MT201). Mol Cancer Ther 9(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • Fekete T, Raso E et al (2012) Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples. Int J Cancer 131(1):95–105

    Google Scholar 

  • Fryer RM, Randall J et al (2002) Global analysis of gene expression: methods, interpretation, and pitfalls. Exp Nephrol 10(2):64–74

    Article  PubMed  CAS  Google Scholar 

  • Hassan R, Cohen SJ et al (2010) Phase I clinical trial of the chimeric anti-mesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res 16(24):6132–6138

    Article  PubMed  CAS  Google Scholar 

  • Havrilesky LJ, Sanders GD et al (2011) Development of an ovarian cancer screening decision model that incorporates disease heterogeneity: implications for potential mortality reduction. Cancer 117(3):545–553

    Article  PubMed  Google Scholar 

  • Heinzelmann-Schwarz VA, Gardiner-Garden M et al (2004) Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res 10(13):4427–4436

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom I, Raycraft J et al (2003) The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res 63(13):3695–3700

    PubMed  Google Scholar 

  • Hennessy BT, Coleman RL et al (2009) Ovarian cancer. Lancet 374(9698):1371–1382

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Dong H et al (2011) Gene co-expression network and functional module analysis of ovarian cancer. Int J Comput Biol Drug Des 4(2):147–164

    Article  PubMed  Google Scholar 

  • Houle CD, Ding XY et al (2002) Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian cancer progression. Gynecol Oncol 86(1):69–78

    Article  PubMed  Google Scholar 

  • Hwang JR, Jo K et al (2012) Upregulation of CD9 in ovarian cancer is related to the induction of TNF-alpha gene expression and constitutive NF-kappaB activation. Carcinogenesis 33(1):77–83

    Article  PubMed  CAS  Google Scholar 

  • Jager M, Schoberth A et al (2012) Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM × anti-CD3). Cancer Res 72(1):24–32

    Article  PubMed  Google Scholar 

  • Jemal A, Siegel R et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • Kim JH, Herlyn D et al (2003) Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res 9(13):4782–4791

    PubMed  CAS  Google Scholar 

  • King HC, Sinha AA (2001) Gene expression profile analysis by DNA microarrays: promise and pitfalls. JAMA 286(18):2280–2288

    Article  PubMed  CAS  Google Scholar 

  • Konstantinopoulos PA, Spentzos D et al (2008) Gene-expression profiling in epithelial ovarian cancer. Nat Clin Pract Oncol 5(10):577–587

    Article  PubMed  CAS  Google Scholar 

  • Krajewski S, Bodrug S et al (1994) Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes. Am J Pathol 145(3):515–525

    PubMed  CAS  Google Scholar 

  • Krajewski S, Krajewska M et al (1999) Prognostic significance of apoptosis regulators in breast cancer. Endocr Relat Cancer 6(1):29–40

    Article  PubMed  CAS  Google Scholar 

  • Kurman RJ, Shih Ie M (2010) The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 34(3):433–443

    Article  PubMed  Google Scholar 

  • Kurman RJ, Shih Ie M (2011) Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum Pathol 42(7):918–931

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Dong H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Meinhold-Heerlein I, Stenner-Liewen F et al (2001) Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. Am J Pathol 158(4):1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Meinhold-Heerlein I, Bauerschlag D et al (2005) Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene 24(6):1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Meinhold-Heerlein I, Bauerschlag D et al (2007) An integrated clinical-genomics approach identifies a candidate multi-analyte blood test for serous ovarian carcinoma. Clin Cancer Res 13(2 Pt 1):458–466

    Article  PubMed  CAS  Google Scholar 

  • Mok SC, Chao J et al (2001) Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 93(19):1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Mor G, Visintin I et al (2005) Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci USA 102(21):7677–7682

    Article  PubMed  CAS  Google Scholar 

  • Ott MG, Marme F et al (2012) Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int J Cancer 130(9):2195–2203

    Google Scholar 

  • Ralhan R, Cao J et al (2010) EpCAM nuclear localization identifies aggressive thyroid cancer and is a marker for poor prognosis. BMC Cancer 10:331

    Article  PubMed  Google Scholar 

  • Rangel LB, Agarwal R et al (2003) Tight junction proteins claudin-3 and claudin-4 are frequently over-expressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 9(7):2567–2575

    PubMed  CAS  Google Scholar 

  • Rentrop M, Knapp B et al (1986) Aminoalkylsilane-treated glass slides as support for in situ hybridization of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem J 18(5):271–276

    Article  PubMed  CAS  Google Scholar 

  • Schummer M, Drescher C et al (2012) Evaluation of ovarian cancer remission markers HE4, MMP7 and Mesothelin by comparison to the established marker CA125. Gynecol Oncol 125(1):65–69

    Google Scholar 

  • Spellman PT, Bell D et al (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615

    Article  Google Scholar 

  • Spizzo G, Went P et al (2004) High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 86(3):207–213

    Article  PubMed  CAS  Google Scholar 

  • Spizzo G, Fong D et al (2011) EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. J Clin Pathol 64(5):415–420

    Article  PubMed  Google Scholar 

  • Sun C, Yi T et al (2011) Efficient inhibition of ovarian cancer by short hairpin RNA targeting claudin-3. Oncol Rep 26(1):193–200

    PubMed  CAS  Google Scholar 

  • Taylor JM, Ankerst DP et al (2008) Validation of biomarker-based risk prediction models. Clin Cancer Res 14(19):5977–5983

    Article  PubMed  Google Scholar 

  • Van Elssen CH, Frings PW et al (2010) Expression of aberrantly glycosylated Mucin-1 in ovarian cancer. Histopathology 57(4):597–606

    Article  PubMed  Google Scholar 

  • Wang L, Ma J et al (2007) Expression of MUC1 in primary and metastatic human epithelial ovarian cancer and its therapeutic significance. Gynecol Oncol 105(3):695–702

    Article  PubMed  CAS  Google Scholar 

  • Welsh JB, Sapinoso LM et al (2001a) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61(16):5974–5978

    PubMed  CAS  Google Scholar 

  • Welsh JB, Zarrinkar PP et al (2001b) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 98(3):1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Wodicka L, Dong H et al (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15(13):1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Yen MJ, Hsu CY et al (2006) Diffuse mesothelin expression correlates with prolonged patient survival in ovarian serous carcinoma. Clin Cancer Res 12(3 Pt 1):827–831

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lisa Sapinoso for preparing the gene array analyses. We also thank Herta Bettendorf for her excellent staining of the tissue microarrays. This work was partially supported by Deutsche Krebshilfe/German Cancer Aid grant 70-3099-Me1 and by NCI-grant 5R21CA152794-02. We thank Ulrike Schulz at MediStat for her excellent support in preparing statistical analyses.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Bauerschlag.

Additional information

Dirk Bauerschlag and Karen Bräutigam equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauerschlag, D., Bräutigam, K., Moll, R. et al. Systematic analysis and validation of differential gene expression in ovarian serous adenocarcinomas and normal ovary. J Cancer Res Clin Oncol 139, 347–355 (2013). https://doi.org/10.1007/s00432-012-1334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1334-8

Keywords

Navigation