Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma

  • Feng Yang
  • Xuchao Xue
  • Jianwei Bi
  • Luming Zheng
  • Kangkang Zhi
  • Yan GuEmail author
  • Guoen FangEmail author
Original Paper



Long noncoding RNAs (lncRNAs) have been shown to have functional roles in cancer biology and are deregulated in many tumors. The specific aim of this study was to determine the role of a long noncoding RNA CCAT1 in the progression of gastric carcinoma and discover which factors contribute to the deregulation of CCAT1.


A computational screen of CCAT1 promoter was conducted to search for transcription-factor-binding sites. The association of c-Myc with the CCAT1 promoter in vivo was tested by chromatin immunoprecipitation assay. CCAT1 promoter activities were examined by luciferase reporter assay. The function of the c-Myc binding site in the CCAT1 promoter region was tested by a promoter assay with nucleotide substitutions in the putative E-box. The effect of CCAT1 on gastric carcinoma cell proliferation and migration was tested using in vitro cell proliferation and migration assays.


CCAT1 levels were markedly increased in gastric carcinoma tissues compared with normal tissues. c-Myc directly binds to the E-box element in the promoter region of CCAT1, and when ectopically expressed increased promoter activity and expression of CCAT1. Nucleotide substitutions in the E-box element in the promoter region abrogated c-Myc-dependent promoter activation. The expression of CCAT1 and c-Myc shows strong association in gastric carcinomas. Moreover, abnormally expressed CCAT1 promotes cell proliferation and migration.


These data suggest that c-Myc induction of CCAT1 holds an important role in gastric carcinoma and implicate the potential application of CCAT1 in the treatment of gastric carcinoma.


Long noncoding RNA CCAT1 c-Myc Gastric carcinoma 


Conflict of interest

The authors have declared that no competing interest exists.

Supplementary material

432_2012_1324_MOESM1_ESM.tif (966 kb)
Supplementary Fig. 1 The nucleotide sequences of CCAT1 promoter region including the E-box site and transcription start site. (TIFF 965 kb)
432_2012_1324_MOESM2_ESM.tif (3.4 mb)
Supplementary Fig. 2 c-Myc promotes cell migration by transwell assays. The images are representative of at least three independent experiments employing AGS and MKN45 cells. The relative level of cell migration is presented as the mean ± standard error, based on at least three independent experiments. *p < 0.05. (TIFF 3487 kb)
432_2012_1324_MOESM3_ESM.doc (58 kb)
Supplementary material 3 (DOC 58 kb)


  1. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, Tsao MS, Penn LZ (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66(10):5330–5337PubMedCrossRefGoogle Scholar
  2. Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR (2008) MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol 14(39):5962–5968PubMedCrossRefGoogle Scholar
  3. Calcagno DQ, Leal MF, Demachki S, Araujo MT, Freitas FW, Oliveira e Souza D, Assumpcao PP, Ishak G, de Arruda Cardoso Smith M, Burbano RR (2010) MYC in gastric carcinoma and intestinal metaplasia of young adults. Cancer Genet Cytogenet 202(1):63–66PubMedCrossRefGoogle Scholar
  4. Cole MD, Henriksson M (2006) 25 years of the c-Myc oncogene. Semin Cancer Biol 16(4):241PubMedCrossRefGoogle Scholar
  5. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264PubMedCrossRefGoogle Scholar
  6. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCrossRefGoogle Scholar
  7. Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ (2009) Gastric cancer. Lancet 374(9688):477–490PubMedCrossRefGoogle Scholar
  8. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419PubMedCrossRefGoogle Scholar
  9. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Kong B, Langerod A, Borresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629PubMedCrossRefGoogle Scholar
  10. Krzyzanowski PM, Muro EM, Andrade-Navarro MA (2012) Computational approaches to discovering noncoding RNA. Wiley Interdiscip Rev RNA 3(4):567–579PubMedCrossRefGoogle Scholar
  11. Li L, Feng T, Lian Y, Zhang G, Garen A, Song X (2009) Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci USA 106(31):12956–12961PubMedCrossRefGoogle Scholar
  12. Milne AN, Carneiro F, O’Morain C, Offerhaus GJ (2009) Nature meets nurture: molecular genetics of gastric cancer. Hum Genet 126(5):615–628PubMedCrossRefGoogle Scholar
  13. Moore MA, Attasara P, Khuhaprema T, Le TN, Nguyen TH, Raingsey PP, Sriamporn S, Sriplung H, Srivanatanakul P, Bui DT, Wiangnon S, Sobue T (2010) Cancer epidemiology in mainland South-East Asia—past, present and future. Asian Pac J Cancer Prev 11(Suppl 2):67–80PubMedGoogle Scholar
  14. Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40(14):6391–6400PubMedCrossRefGoogle Scholar
  15. Muers M (2011) RNA: genome-wide views of long non-coding RNAs. Nat Rev Genet 12(11):742PubMedCrossRefGoogle Scholar
  16. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, Bochem A, Dayanc BE, Ritter G, Gomceli I, Bostanci EB, Akoglu M, Chen YT, Old LJ, Gure AO (2012) Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer 130(7):1598–1606PubMedCrossRefGoogle Scholar
  17. Nobili S, Bruno L, Landini I, Napoli C, Bechi P, Tonelli F, Rubio CA, Mini E, Nesi G (2011) Genomic and genetic alterations influence the progression of gastric cancer. World J Gastroenterol 17(3):290–299PubMedCrossRefGoogle Scholar
  18. Oster SK, Ho CS, Soucie EL, Penn LZ (2002) The myc oncogene: marvelouslY complex. Adv Cancer Res 84:81–154PubMedCrossRefGoogle Scholar
  19. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR, Denk H, Schroeder R, Trauner M, Zatloukal K (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1):330–342PubMedCrossRefGoogle Scholar
  20. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641PubMedCrossRefGoogle Scholar
  21. Solomon DL, Amati B, Land H (1993) Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers. Nucleic Acids Res 21(23):5372–5376PubMedCrossRefGoogle Scholar
  22. Song L, Dai T, Xie Y, Wang C, Lin C, Wu Z, Ying Z, Wu J, Li M, Li J (2012) Up-regulation of miR-1245 by c-myc targets BRCA2 and impairs DNA repair. J Mol Cell Biol 4(2):108–117PubMedCrossRefGoogle Scholar
  23. Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? OncogeneGoogle Scholar
  24. Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 71(1):3–7PubMedCrossRefGoogle Scholar
  25. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914PubMedCrossRefGoogle Scholar
  26. Yan B, Wang Z (2012) Long Noncoding RNA: Its Physiological and Pathological Roles. DNA Cell Biol. doi: 10.1089/dna.2011.1544
  27. Zhang L, Hou Y, Ashktorab H, Gao L, Xu Y, Wu K, Zhai J (2010) The impact of C-MYC gene expression on gastric cancer cell. Mol Cell Biochem 344(1–2):125–135PubMedCrossRefGoogle Scholar
  28. Zhu Y, Xiao X, Dong L, Liu Z (2012) Investigation and identification of let-7a related functional proteins in gastric carcinoma by proteomics. Anal Cell Pathol (Amst) 35(4):285–295Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of General SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Department of General SurgeryChanghai Hospital, Second Military Medical UniversityShanghaiChina

Personalised recommendations