Skip to main content

Advertisement

Log in

Growth inhibitory effect of dihydroartemisinin on Bcr/Abl+ chronic myeloid leukemia K562 cells involve AKT, ERK and NF-κB modulation

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

In our previous publication, we have shown that dihydroartemisinin could significantly inhibit the growth of CML K562 cells by its anti-proliferative and inducing apoptotic effects. Given the pivotal effect of Bcr/Abl tyrosine kinase and its downstream signal factors on CML cell proliferation and survival, we extend our study to investigate the effect of DHA on Bcr/Abl and related signal factors to further illuminate the possible mechanisms of the effect of DHA on CML cells.

Methods

The expression of Bcr/Abl was analyzed with PCR and Western blotting methods at both mRNA and protein levels. Measurement of protein expression and tyrosine phosphorylation activity of Bcr/Abl, AKT, ERK1/2, NF-κB and cytochrome c were performed with Western blotting and immunoprecipitation methods. Using the activity kits analyzed the activity of caspase 9 and caspase 3.

Results

The treatment with DHA results in a significant suppression on Bcr/Abl expression and leads to a concentration-dependent reduction on the Bcr/Abl tyrosine activity. Moreover, it also results in a strong influence on the downstream signal factors of Bcr/Abl, which includes inhibition of tyrosine kinase activity of AKT and ERK1/2, suppression of NF-κB protein expression, promotion of the cytochrome c release and the consequential activation of caspase 3/9 in CML K562 cells.

Conclusions

Together with our previous report, our data show that the growth inhibitory effect of DHA on CML cells might be due to the influence on Bcr/Abl expression and its downstream signal factors. DHA might be a potential novel anti-CML drug candidate and worthy of further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amarante-Mendes GP, Naekyung Kim C, Liu L, Huang Y, Perkins CL, Green DR, Bhalla K (1998) Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 91(5):1700–1705

    PubMed  CAS  Google Scholar 

  • Benakis A, Paris M, Loutan L, Plessas CT, Plessas ST (1997) Pharmacokinetics of artemisinin and artesunate after oral administration in healthy volunteers. Am J Trop Med Hyg 56(1):17–23

    PubMed  CAS  Google Scholar 

  • Cilloni D, Saglio G (2012) Molecular pathways: BCR-ABL. Clin Cancer Res 18(4):930–937. doi:10.1158/1078-0432.CCR-10-1613

    Article  PubMed  CAS  Google Scholar 

  • Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944):824–830

    Article  PubMed  CAS  Google Scholar 

  • Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA, Hartmann D, Schlegel R (2005) Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res 65(23):10854–10861. doi:10.1158/0008-5472.CAN-05-1216

    Article  PubMed  CAS  Google Scholar 

  • Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG, Solary E (1998) BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 91(7):2415–2422

    PubMed  CAS  Google Scholar 

  • Gao N, Budhraja A, Cheng S, Liu EH, Huang C, Chen J, Yang Z, Chen D, Zhang Z, Shi X (2011) Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo. Apoptosis 16(5):511–523. doi:10.1007/s10495-011-0580-6

    Article  PubMed  CAS  Google Scholar 

  • Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J (2009) Signaling networks associated with BCR-ABL-dependent transformation. Cancer Control 16(2):100–107

    PubMed  Google Scholar 

  • He Q, Shi J, Shen XL, An J, Sun H, Wang L, Hu YJ, Sun Q, Fu LC, Sheikh MS, Huang Y (2010) Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9(10):819–824

    Article  PubMed  CAS  Google Scholar 

  • He Y, Fan J, Lin H, Yang X, Ye Y, Liang L, Zhan Z, Dong X, Sun L, Xu H (2011) The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1alpha in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int 31(1):53–60. doi:10.1007/s00296-009-1218-7

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163

    Article  PubMed  CAS  Google Scholar 

  • Kawai H, Nie L, Yuan ZM (2002) Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Mol Cell Biol 22(17):6079–6088

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Zhou HJ, Wu XH (2006) Dihydroartemisinin downregulates vascular endothelial growth factor expression and induces apoptosis in chronic myeloid leukemia K562 cells. Cancer Chemother Pharmacol 57(2):213–220. doi:10.1007/s00280-005-0002-y

    Article  PubMed  CAS  Google Scholar 

  • Lu YY, Chen TS, Wang XP, Li L (2010) Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques. J Biomed Opt 15(4):046028. doi:10.1117/1.3481141

    Article  PubMed  Google Scholar 

  • Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247(4946):1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Melo JV, Deininger MW (2004) Biology of chronic myelogenous leukemia–signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 18(3):545–568. doi:10.1016/j.hoc.2004.03.008

    Article  PubMed  Google Scholar 

  • Panwalkar A, Verstovsek S, Giles F (2004) Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer 100(8):1578–1589. doi:10.1002/cncr.20182

    Article  PubMed  CAS  Google Scholar 

  • Quintas-Cardama A, Kantarjian HM, Cortes JE (2009) Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 16(2):122–131

    PubMed  Google Scholar 

  • Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr (1998) A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 12(7):968–981

    Article  PubMed  CAS  Google Scholar 

  • Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293

    Article  PubMed  CAS  Google Scholar 

  • Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86(2):726–736

    PubMed  CAS  Google Scholar 

  • Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16(20):6151–6161. doi:10.1093/emboj/16.20.6151

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Greil J, Heidenreich O (2006) Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials. Acta Pharmacol Sin 27(3):273–281. doi:10.1111/j.1745-7254.2006.00282.x

    Article  PubMed  CAS  Google Scholar 

  • Tu Y (1999) The development of new antimalarial drugs: qinghaosu and dihydro-qinghaosu. Chin Med J (Engl) 112(11):976–977

    CAS  Google Scholar 

  • Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH, Xue DB, Bai XW, Sun B (2010) Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293(1):99–108. doi:10.1016/j.canlet.2010.01.001

    Article  PubMed  CAS  Google Scholar 

  • Wang SJ, Sun B, Cheng ZX, Zhou HX, Gao Y, Kong R, Chen H, Jiang HC, Pan SH, Xue DB, Bai XW (2011) Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-kappaB pathway. Cancer Chemother Pharmacol 68(6):1421–1430. doi:10.1007/s00280-011-1643-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Scientific Research Foundation of Zhejiang Province (No. 2008B072) and the project from Administration of Traditional Chinese Medicine of Zhejiang Province, China (No. 2010ZA051).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Zhang, G., Wu, X. et al. Growth inhibitory effect of dihydroartemisinin on Bcr/Abl+ chronic myeloid leukemia K562 cells involve AKT, ERK and NF-κB modulation. J Cancer Res Clin Oncol 138, 2095–2102 (2012). https://doi.org/10.1007/s00432-012-1292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1292-1

Keywords

Navigation