Skip to main content
Log in

DNA repair polymorphisms influence the risk of second neoplasm after treatment of childhood acute lymphoblastic leukemia

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Patients treated for childhood acute lymphoblastic leukemia (ALL) are considered to be at increased risk of developing second neoplasm. The aim of our study was to identify DNA repair polymorphisms contributing to the risk of second neoplasm in clinically well-characterized Slovenian patients treated for childhood ALL.

Methods

Pediatric patients diagnosed with ALL between 1971 and 2001 were included in the study. According to the identified clinical risk factors for second neoplasm, a matched set of cases with second neoplasm and controls was selected and genotyped for 11 DNA repair polymorphisms.

Results

Among 359 pediatric patients with ALL, 20 second neoplasms were observed. The dose of radiotherapy (P = 0.011), administration of epipodophyllotoxins (P = 0.006), and the dose of anthracyclines (P < 0.001) showed a significant association with the risk of second neoplasm. Among genetic factors, we observed a significant association of NBN 1197G allele with increased risk of second neoplasms (RR = 4.36; 95 % CI: 1.19–15.98; P = 0.026), while the risk was decreased in carriers of XRCC3-316G allele compared with patients with wild-type genotype (RR = 0.20; 95 % CI: 0.04–0.99; P = 0.049).

Conclusions

Our results suggest an important role of NBN 1197A>G and XRCC3-316A>G polymorphisms in the development of second neoplasm in patients treated for childhood ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen-Brady K, Wong J, Camp NJ (2006) PedGenie: an analysis approach for genetic association testing in extended pedigrees and genealogies of arbitrary size. BMC Bioinformatics 7:209. doi:10.1186/1471-2105-7-209

    Article  PubMed  Google Scholar 

  • Bhatia S, Sather HN, Pabustan OB, Trigg ME, Gaynon PS, Robison LL (2002) Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood 99(12):4257–4264

    Article  PubMed  CAS  Google Scholar 

  • Borgmann A, Zinn C, Hartmann R, Herold R, Kaatsch P, Escherich G, Moricke A, Henze G, von Stackelberg A (2008) Secondary malignant neoplasms after intensive treatment of relapsed acute lymphoblastic leukaemia in childhood. Eur J Cancer 44(2):257–268. doi:10.1016/j.ejca.2007.09.019

    Article  PubMed  Google Scholar 

  • Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair (Amst) 2(9):955–969. doi:10.1016/S1568-7864(03)00118-6

    Article  CAS  Google Scholar 

  • Caldecott KW, Aoufouchi S, Johnson P, Shall S (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res 24(22):4387–4394. doi:10.1093/nar/24.22.4387

    Article  PubMed  CAS  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. J Biol Chem 267(1):166–172

    PubMed  CAS  Google Scholar 

  • Erculj N, Kovac V, Hmeljak J, Dolzan V (2011) The influence of platinum pathway polymorphisms on the outcome in patients with malignant mesothelioma. Ann Oncol. [Epub ahead of print Jul 15]. doi:10.1093/annonc/mdr324

  • Erculj N, Zadel M, Dolzan V (2010) Genetic polymorphisms in base excision repair in healthy Slovenian population and their influence on DNA damage. Acta Chim Slov 57(1):182–188

    CAS  Google Scholar 

  • Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11(12):1513–1530

    PubMed  CAS  Google Scholar 

  • Goricar K, Erculj N, Zadel M, Dolzan V (2011) Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage. Radiol Oncol. [E pub ahead of print], Jan 2. doi:10.2478/v10019-012-0001-7

  • Hawkins MM, Wilson LM, Stovall MA, Marsden HB, Potok MH, Kingston JE, Chessells JM (1992) Epipodophyllotoxins, alkylating agents, and radiation and risk of secondary leukaemia after childhood cancer. BMJ 304(6832):951–958

    Article  PubMed  CAS  Google Scholar 

  • Hijiya N, Hudson MM, Lensing S, Zacher M, Onciu M, Behm FG, Razzouk BI, Ribeiro RC, Rubnitz JE, Sandlund JT, Rivera GK, Evans WE, Relling MV, Pui CH (2007) Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 297(11):1207–1215. doi:10.1001/jama.297.11.1207

    Article  PubMed  CAS  Google Scholar 

  • Ho-Pun-Cheung A, Assenat E, Bascoul-Mollevi C, Bibeau F, Boissiere-Michot F, Thezenas S, Cellier D, Azria D, Rouanet P, Senesse P, Ychou M, Lopez-Crapez E (2011) A large-scale candidate gene approach identifies SNPs in SOD2 and IL13 as predictive markers of response to preoperative chemoradiation in rectal cancer. Pharmacogenomics J 11(6):437–443. doi:10.1038/tpj.2010.62

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium. The International HapMap Project (2003). Nature 426 (6968):789–796. doi:10.1038/nature02168

  • Jawad M, Seedhouse CH, Russell N, Plumb M (2006) Polymorphisms in human homeobox HLX1 and DNA repair RAD51 genes increase the risk of therapy-related acute myeloid leukemia. Blood 108(12):3916–3918. doi:10.1182/blood-2006-05-022921

    Article  PubMed  CAS  Google Scholar 

  • Jazbec J, Aplenc R, Dolzan V, Debeljak M, Jereb B (2003) GST polymorphisms and occurrence of second neoplasms after treatment of childhood leukemia. Leukemia 17(12):2540–2542. doi:10.1038/sj.leu.24031642403164

    Article  PubMed  CAS  Google Scholar 

  • Jazbec J, Ecimovic P, Jereb B (2004) Second neoplasms after treatment of childhood cancer in Slovenia. Pediatr Blood Cancer 42(7):574–581. doi:10.1002/pbc.20025

    Article  PubMed  Google Scholar 

  • Jazbec J, Kitanovski L, Aplenc R, Debeljak M, Dolzan V (2005) No evidence of association of methylenetetrahydrofolate reductase polymorphism with occurrence of second neoplasms after treatment of childhood leukemia. Leuk Lymphoma 46(6):893–897. doi:10.1080/10428190500086428

    Article  PubMed  CAS  Google Scholar 

  • Jazbec J, Rajic V, Karas-Kuzelicki N (2008) Leukemias of childhood. Zdravniski Vestnik-Slovenian Med J 77:I25–I30

    Google Scholar 

  • Jazbec J, Todorovski L, Jereb B (2007) Classification tree analysis of second neoplasms in survivors of childhood cancer. BMC Cancer 7:27. doi:10.1186/1471-2407-7-27

    Article  PubMed  Google Scholar 

  • Jensen OM, Parkin DM, MacLennan R, Muir CS, Skeet RG (eds) (1991) Cancer registration: principles and methods. IARC Scientific Publications No. 95. International Agency for Research in Cancer, Lyon

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254. doi:10.1038/85798

    Article  PubMed  CAS  Google Scholar 

  • Kimball Dalton VM, Gelber RD, Li F, Donnelly MJ, Tarbell NJ, Sallan SE (1998) Second malignancies in patients treated for childhood acute lymphoblastic leukemia. J Clin Oncol 16(8):2848–2853

    PubMed  CAS  Google Scholar 

  • Loning L, Zimmermann M, Reiter A, Kaatsch P, Henze G, Riehm H, Schrappe M (2000) Secondary neoplasms subsequent to Berlin–Frankfurt–Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 95(9):2770–2775

    PubMed  CAS  Google Scholar 

  • Maule M, Scelo G, Pastore G, Brennan P, Hemminki K, Tracey E, Sankila R, Weiderpass E, Olsen JH, McBride ML, Brewster DH, Pompe-Kirn V, Kliewer EV, Chia KS, Tonita JM, Martos C, Jonasson JG, Merletti F, Boffetta P (2007) Risk of second malignant neoplasms after childhood leukemia and lymphoma: an international study. J Natl Cancer Inst 99(10):790–800. doi:10.1093/jnci/djk180

    Article  PubMed  Google Scholar 

  • Moricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dordelmann M, Loning L, Beier R, Ludwig WD, Ratei R, Harbott J, Boos J, Mann G, Niggli F, Feldges A, Henze G, Welte K, Beck JD, Klingebiel T, Niemeyer C, Zintl F, Bode U, Urban C, Wehinger H, Niethammer D, Riehm H, Schrappe M (2008) Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111(9):4477–4489. doi:10.1182/blood-2007-09-112920

    Article  PubMed  Google Scholar 

  • Mosor M, Ziolkowska I, Januszkiewicz-Lewandowska D, Nowak J (2008) Polymorphisms and haplotypes of the NBS1 gene in childhood acute leukaemia. Eur J Cancer 44(15):2226–2232. doi:10.1016/j.ejca.2008.06.026

    Article  PubMed  CAS  Google Scholar 

  • Neglia JP, Friedman DL, Yasui Y, Mertens AC, Hammond S, Stovall M, Donaldson SS, Meadows AT, Robison LL (2001) Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst 93(8):618–629. doi:10.1093/jnci/93.8.618

    Article  PubMed  CAS  Google Scholar 

  • Neglia JP, Meadows AT, Robison LL, Kim TH, Newton WA, Ruymann FB, Sather HN, Hammond GD (1991) Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med 325(19):1330–1336. doi:10.1056/NEJM199111073251902

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T (2006) siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res 166(3):454–462. doi:10.1667/RR3606.1

    Article  PubMed  CAS  Google Scholar 

  • Ott K, Rachakonda PS, Panzram B, Keller G, Lordick F, Becker K, Langer R, Buechler M, Hemminki K, Kumar R (2011) DNA repair gene and MTHFR gene polymorphisms as prognostic markers in locally advanced adenocarcinoma of the esophagus or stomach treated with cisplatin and 5-fluorouracil-based neoadjuvant chemotherapy. Ann Surg Oncol 18(9):2688–2698. doi:10.1245/s10434-011-1601-y

    Article  PubMed  Google Scholar 

  • Pakakasama S, Sirirat T, Kanchanachumpol S, Udomsubpayakul U, Mahasirimongkol S, Kitpoka P, Thithapandha A, Hongeng S (2007) Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 48(1):16–20. doi:10.1002/pbc.20742

    Article  PubMed  Google Scholar 

  • Park SL, Bastani D, Goldstein BY, Chang SC, Cozen W, Cai L, Cordon-Cardo C, Ding B, Greenland S, He N, Hussain SK, Jiang Q, Lee YC, Liu S, Lu ML, Mack TM, Mao JT, Morgenstern H, Mu LN, Oh SS, Pantuck A, Papp JC, Rao J, Reuter VE, Tashkin DP, Wang H, You NC, Yu SZ, Zhao JK, Zhang ZF (2010) Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers. Carcinogenesis 31(7):1264–1271. doi:10.1093/carcin/bgq096

    Article  PubMed  CAS  Google Scholar 

  • Pratt CB, George SL, Hannock ML, Hustu HO, Kun LE, Ochs JS (1998) Second malignant neoplasms in survivors of childhood acute lymphoblastic leukemia [abstract]. Pediatr Res 23:345a

    Google Scholar 

  • Pui CH, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT, Ribeiro RC, Relling MV, Kun LE, Evans WE, Hudson MM (2003) Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 349(7):640–649. doi:10.1056/NEJMoa035091

    Article  PubMed  Google Scholar 

  • Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178. doi:10.1056/NEJMra052603

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Ribeiro RC, Hancock ML, Rivera GK, Evans WE, Raimondi SC, Head DR, Behm FG, Mahmoud MH, Sandlund JT et al (1991) Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 325(24):1682–1687. doi:10.1056/NEJM199112123252402

    Article  PubMed  CAS  Google Scholar 

  • Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, Zimmermann M, Lampert F, Havers W, Niethammer D et al (1994) Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 84(9):3122–3133

    PubMed  CAS  Google Scholar 

  • Riehm H, Reiter A, Schrappe M, Berthold F, Dopfer R, Gerein V, Ludwig R, Ritter J, Stollmann B, Henze G (1987) Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin Padiatr 199(3):151–160. doi:10.1055/s-2008-1026781

    Article  PubMed  CAS  Google Scholar 

  • Sandoval C, Pui CH, Bowman LC, Heaton D, Hurwitz CA, Raimondi SC, Behm FG, Head DR (1993) Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol 11(6):1039–1045

    PubMed  CAS  Google Scholar 

  • Schrappe M, Reiter A, Ludwig WD, Harbott J, Zimmermann M, Hiddemann W, Niemeyer C, Henze G, Feldges A, Zintl F, Kornhuber B, Ritter J, Welte K, Gadner H, Riehm H (2000) Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 95(11):3310–3322

    PubMed  CAS  Google Scholar 

  • Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E (2002) The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 100(10):3761–3766. doi:10.1182/blood-2002-04-1152

    Article  PubMed  CAS  Google Scholar 

  • Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N (2004) Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res 10(8):2675–2680. doi:10.1158/1078-0432.CCR-03-0372

    Article  PubMed  CAS  Google Scholar 

  • Shah A, Coleman MP (2007) Increasing incidence of childhood leukaemia: a controversy re-examined. Br J Cancer 97(7):1009–1012. doi:10.1038/sj.bjc.6603946

    PubMed  CAS  Google Scholar 

  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. doi:10.1093/nar/29.1.308

    Article  PubMed  CAS  Google Scholar 

  • Stanulla M, Dynybil C, Bartels DB, Dordelmann M, Loning L, Claviez A, Schrappe M (2007) The NQO1 C609T polymorphism is associated with risk of secondary malignant neoplasms after treatment for childhood acute lymphoblastic leukemia: a matched-pair analysis from the ALL-BFM study group. Haematologica 92(11):1581–1582. doi:10.3324/haematol.10260

    Article  PubMed  Google Scholar 

  • Stanulla M, Schaeffeler E, Moricke A, Coulthard SA, Cario G, Schrauder A, Kaatsch P, Dordelmann M, Welte K, Zimmermann M, Reiter A, Eichelbaum M, Riehm H, Schrappe M, Schwab M (2009) Thiopurine methyltransferase genetics is not a major risk factor for secondary malignant neoplasms after treatment of childhood acute lymphoblastic leukemia on Berlin–Frankfurt–Munster protocols. Blood 114(7):1314–1318. doi:10.1182/blood-2008-12-193250

    Article  PubMed  CAS  Google Scholar 

  • Thompson LH, West MG (2000) XRCC1 keeps DNA from getting stranded. Mutat Res 459(1):1–18. doi:10.1016/S0921-8777(99)00058-0

    Article  PubMed  CAS  Google Scholar 

  • Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ (2004) XRCC2 and XRCC3 polymorphisms are not associated with risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 13(6):1090–1091. doi:10.1093/carcin/bgh126

    PubMed  CAS  Google Scholar 

  • Tregouet DA, Garelle V (2007) A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics 23(8):1038–1039. doi:10.1093/bioinformatics/btm058

    Article  PubMed  CAS  Google Scholar 

  • Vral A, Willems P, Claes K, Poppe B, Perletti G, Thierens H (2011) Combined effect of polymorphisms in Rad51 and Xrcc3 on breast cancer risk and chromosomal radiosensitivity. Mol Med Report 4(5):901–912. doi:10.3892/mmr.2011.523

    PubMed  CAS  Google Scholar 

  • Walter AW, Hancock ML, Pui CH, Hudson MM, Ochs JS, Rivera GK, Pratt CB, Boyett JM, Kun LE (1998) Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J Clin Oncol 16(12):3761–3767

    PubMed  CAS  Google Scholar 

  • Wilson DM 3rd, Bohr VA (2007) The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst) 6(4):544–559. doi:10.1016/j.dnarep.2006.10.017

    Article  CAS  Google Scholar 

  • Wu PE, Shen CY (2011) ‘Hide-then-hit’ to explain the importance of genotypic polymorphism of DNA repair genes in determining susceptibility to cancer. J Mol Cell Biol 3(1):59–65. doi:10.1093/jmcb/mjq054

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37(Web Server issue):W600–W605. doi:10.1093/nar/gkp290

  • Yanagisawa T, Urade M, Yamamoto Y, Furuyama J (1998) Increased expression of human DNA repair genes, XRCC1, XRCC3 and RAD51, in radioresistant human KB carcinoma cell line N10. Oral Oncol 34(6):524–528. doi:10.1016/S1368-8375(98)00045-1

    Article  PubMed  CAS  Google Scholar 

  • Yuan HY, Chiou JJ, Tseng WH, Liu CH, Liu CK, Lin YJ, Wang HH, Yao A, Chen YT, Hsu CN (2006) FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 34(Web Server issue):W635–W641. doi:10.1093/nar/gkl236

Download references

Acknowledgments

This work was financially supported by The Slovenian Research Agency (ARRS Grants No. P1-0170, J3-4220, and P3-0343). Nina Erculj was the recipient of the Slovenian National L’Oreal-UNESCO For Women In Science Programme 2012 Award.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vita Dolžan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erčulj, N., Faganel Kotnik, B., Debeljak, M. et al. DNA repair polymorphisms influence the risk of second neoplasm after treatment of childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 138, 1919–1930 (2012). https://doi.org/10.1007/s00432-012-1265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1265-4

Keywords

Navigation