Journal of Cancer Research and Clinical Oncology

, Volume 137, Issue 9, pp 1301–1308 | Cite as

Nomogram predicting clinical outcomes in breast cancer patients treated with neoadjuvant chemotherapy

  • Bhumsuk Keam
  • Seock-Ah Im
  • Sohee Park
  • Byung-Ho Nam
  • Sae-Won Han
  • Do-Youn Oh
  • Jee Hyun Kim
  • Se-Hoon Lee
  • Wonshik Han
  • Dong-Wan Kim
  • Tae-You Kim
  • In Ae Park
  • Dong-Young Noh
  • Dae Seog Heo
  • Yung-Jue Bang
Original Paper

Abstract

Purpose

The aim of this study was to combine clinical pathologic variables that are associated with pathologic completer response (pCR) and relapse-free survival (RFS) after neoadjuvant chemotherapy into prediction nomograms.

Methods

A total of 370 stage II or III breast cancer patients who received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. We developed the nomograms using logistic regression model for pCR and Cox proportional hazard regression model for RFS.

Results

The nomogram for pCR based on initial tumor size, estrogen receptor (ER), human epidermal growth factor receptor 2, and Ki67 had good discrimination performance (AUROC = 0.830). Multivariate Cox model identified age less than 35, initial clinical stage, pathologic stage, ER, Ki67 as prognostic factors, and the nomogram for RFS was developed based on these covariates. The concordance index for the second nomogram was 0.781, and calibration was also good.

Conclusions

We developed nomograms based on clinical and pathologic characteristics to predict the probability of pCR and RFS for patients receiving neoadjuvant docetaxel/doxorubicin chemotherapy.

Keywords

Nomogram Breast cancer Neoadjuvant chemotherapy Prediction 

References

  1. Barranger E, Coutant C, Flahault A, Delpech Y, Darai E, Uzan S (2005) An axilla scoring system to predict non-sentinel lymph node status in breast cancer patients with sentinel lymph node involvement. Br Cancer Res Treat 91:113–119CrossRefGoogle Scholar
  2. Colleoni M, Bagnardi V, Rotmensz N, Dellapasqua S, Viale G, Pruneri G, Veronesi P, Torrisi R, Luini A, Intra M, Galimberti V, Montagna E, Goldhirsch A (2009) A risk score to predict disease-free survival in patients not achieving a pathological complete remission after preoperative chemotherapy for breast cancer. Ann Oncol 20:1178–1184PubMedCrossRefGoogle Scholar
  3. Estevez LG, Gradishar WJ (2004) Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res 10:3249–3261PubMedCrossRefGoogle Scholar
  4. Galea MH, Blamey RW, Elston CE, Ellis IO (1992) The Nottingham prognostic Index in primary breast cancer. Br Cancer Res Treat 22:207–219CrossRefGoogle Scholar
  5. Gralow JR, Burstein HJ, Wood W, Hortobagyi GN, Gianni L, von Minckwitz G, Buzdar AU, Smith IE, Symmans WF, Singh B, Winer EP (2008) Preoperative therapy in invasive breast cancer: pathologic assessment and systemic therapy issues in operable disease. J Clin Oncol 26:814–819PubMedCrossRefGoogle Scholar
  6. Greene F, Page D, Fleming I, Fritz A, Balch C, Haller D, Morrow M (2002) AJCC cancer staging manual, 6th edn. Springer, New YorkCrossRefGoogle Scholar
  7. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  8. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387PubMedCrossRefGoogle Scholar
  9. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56:337–344PubMedCrossRefGoogle Scholar
  10. Hosmer DW, Lemeshow S (1999) Applied survival analysis: regression modeling of time to event data. Wiley, New YorkGoogle Scholar
  11. Iasonos A, Schrag D, Raj GV, Panageas KS (2008) How to build and interpret a nomogram for cancer prognosis. J Clin Oncol 26:1364–1370PubMedCrossRefGoogle Scholar
  12. Jeruss JS, Mittendorf EA, Tucker SL, Gonzalez-Angulo AM, Buchholz TA, Sahin AA, Cormier JN, Buzdar AU, Hortobagyi GN, Hunt KK (2008a) Combined use of clinical and pathologic staging variables to define outcomes for breast cancer patients treated with neoadjuvant therapy. J Clin Oncol 26:246–252PubMedCrossRefGoogle Scholar
  13. Jeruss JS, Mittendorf EA, Tucker SL, Gonzalez-Angulo AM, Buchholz TA, Sahin AA, Cormier JN, Buzdar AU, Hortobagyi GN, Hunt KK (2008b) Staging of breast cancer in the neoadjuvant setting. Cancer Res 68:6477–6481PubMedCrossRefGoogle Scholar
  14. Jones RL, Salter J, A’Hern R, Nerurkar A, Parton M, Reis-Filho JS, Smith IE, Dowsett M (2009) The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Br Cancer Res Treat 116:53–68CrossRefGoogle Scholar
  15. Jones RL, Salter J, A’Hern R, Nerurkar A, Parton M, Reis-Filho JS, Smith IE, Dowsett M (2010) Relationship between oestrogen receptor status and proliferation in predicting response and long-term outcome to neoadjuvant chemotherapy for breast cancer. Br Cancer Res Treat 119:315–323CrossRefGoogle Scholar
  16. Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ (2007) Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer. BMC Cancer 7:203PubMedCrossRefGoogle Scholar
  17. Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Cho N, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ (2009) Clinical significance of axillary nodal ratio in stage II/III breast cancer treated with neoadjuvant chemotherapy. Br Cancer Res Treat 116:153–160CrossRefGoogle Scholar
  18. Keam B, Im SA, Lee KH, Han SW, Oh DY, Kim JH, Lee SH, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Bang YJ (2011) Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Br Cancer Res 13:R22CrossRefGoogle Scholar
  19. Kohrt HE, Olshen RA, Bermas HR, Goodson WH, Wood DJ, Henry S, Rouse RV, Bailey L, Philben VJ, Dirbas FM, Dunn JJ, Johnson DL, Wapnir IL, Carlson RW, Stockdale FE, Hansen NM, Jeffrey SS (2008) New models and online calculator for predicting non-sentinel lymph node status in sentinel lymph node positive breast cancer patients. BMC Cancer 8:66PubMedCrossRefGoogle Scholar
  20. Lee KH, Im SA, Oh DY, Lee SH, Chie EK, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ (2007) Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer 7:63PubMedCrossRefGoogle Scholar
  21. Lemeshow S, Hosmer DW Jr (1982) A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 115:92–106PubMedGoogle Scholar
  22. Mazouni C, Peintinger F, Wan-Kau S, Andre F, Gonzalez-Angulo AM, Symmans WF, Meric-Bernstam F, Valero V, Hortobagyi GN, Pusztai L (2007) Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol 25:2650–2655PubMedCrossRefGoogle Scholar
  23. Nam BH (2000) Discrimination and calibration in survival analysis, Doctoral dissertation. Boston University, Boston, MAGoogle Scholar
  24. Pencina MJ, D’Agostino RB (2004) Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med 23:2109–2123PubMedCrossRefGoogle Scholar
  25. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, Parker HL (2001) Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 19:980–991PubMedGoogle Scholar
  26. Rouzier R, Pusztai L, Delaloge S, Gonzalez-Angulo AM, Andre F, Hess KR, Buzdar AU, Garbay JR, Spielmann M, Mathieu MC, Symmans WF, Wagner P, Atallah D, Valero V, Berry DA, Hortobagyi GN (2005) Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer. J Clin Oncol 23:8331–8339PubMedCrossRefGoogle Scholar
  27. Rouzier R, Pusztai L, Garbay JR, Delaloge S, Hunt KK, Hortobagyi GN, Berry D, Kuerer HM (2006) Development and validation of nomograms for predicting residual tumor size and the probability of successful conservative surgery with neoadjuvant chemotherapy for breast cancer. Cancer 107:1459–1466PubMedCrossRefGoogle Scholar
  28. Shimizu C, Ando M, Kouno T, Katsumata N, Fujiwara Y (2007) Current trends and controversies over pre-operative chemotherapy for women with operable breast cancer. Jpn J Clin Oncol 37:1–8PubMedCrossRefGoogle Scholar
  29. Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M, Buzdar AU, Singletary SE, Hortobagyi GN, Pusztai L (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25:4414–4422PubMedCrossRefGoogle Scholar
  30. Unal B, Gur AS, Ahrendt G, Johnson R, Bonaventura M, Soran A (2009) Can nomograms predict non-sentinel lymph node metastasis after neoadjuvant chemotherapy in sentinel lymph node-positive breast cancer patients? Clin Br Cancer 9:92–95CrossRefGoogle Scholar
  31. Van Zee KJ, Manasseh DM, Bevilacqua JL, Boolbol SK, Fey JV, Tan LK, Borgen PI, Cody HS III, Kattan MW (2003) A nomogram for predicting the likelihood of additional nodal metastases in breast cancer patients with a positive sentinel node biopsy. Ann Surg Oncol 10:1140–1151PubMedCrossRefGoogle Scholar
  32. Yip CH (2009) Breast cancer in Asia. Methods Mol Biol 471:51–64PubMedCrossRefGoogle Scholar
  33. Yoo KY, Kang D, Park SK, Kim SU, Shin A, Yoon H, Ahn SH, Noh DY, Choe KJ (2002) Epidemiology of breast cancer in Korea: occurrence, high-risk groups, and prevention. J Korean Med Sci 17:1–6PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bhumsuk Keam
    • 1
    • 2
  • Seock-Ah Im
    • 1
    • 2
  • Sohee Park
    • 3
  • Byung-Ho Nam
    • 3
  • Sae-Won Han
    • 1
    • 2
  • Do-Youn Oh
    • 1
    • 2
  • Jee Hyun Kim
    • 1
    • 2
    • 4
  • Se-Hoon Lee
    • 1
    • 2
  • Wonshik Han
    • 2
    • 5
  • Dong-Wan Kim
    • 1
    • 2
  • Tae-You Kim
    • 1
    • 2
  • In Ae Park
    • 2
    • 6
  • Dong-Young Noh
    • 2
    • 5
  • Dae Seog Heo
    • 1
    • 2
  • Yung-Jue Bang
    • 1
    • 2
  1. 1.Department of Internal MedicineSeoul National University College of MedicineChongno-GuKorea
  2. 2.Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  3. 3.Cancer Biostatistics BranchResearch Institute, National Cancer CenterGoyang-siKorea
  4. 4.Department of Internal MedicineSeoul National University Bundang HospitalSeongnam-siKorea
  5. 5.Department of SurgerySeoul National University College of MedicineSeoulKorea
  6. 6.Department of PathologySeoul National University College of MedicineSeoulKorea

Personalised recommendations