Skip to main content

Advertisement

Log in

Breast cancer proteomics: a review for clinicians

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is one of the major health problems of the Western world. Although the survival rate has improved with progress in screening and adjuvant systemic therapies, one-third of the patients with initial breast tumor have recurrence of the disease 10 years after the diagnosis, demonstrating the presence of micrometastasis. The underlying molecular mechanism of the disease needs to be better understood. Allied to genomics, proteomics technologies promise to be valuable for identifying new markers that improve screening, early diagnosis, prognosis and prediction of therapeutic response or toxicity, as well as the identification of new therapeutic targets. In this review, we present features of proteomic technology and its main implications, focusing on the protein profile in tumor tissues/cells through MALDI/SELDI, as well as on the current proteomic challenges in the breast cancer study.

Methods

We performed a research of protein profiling studies using mass spectrometry in breast cancer to identify potential biomarkers.

Results

Many protein peaks have been reported to bear significant diagnostic, prognostic or predictive value; however, the candidate biomarkers have not been validated for use in clinical patient care.

Conclusions

Proteomics is under development and, despite technical barriers that precede the use of proteomics analysis in clinical practice and breast cancer complexity, MALDI-TOF/SELDI-TOF MS proteomic platforms with their innovations are powerful analytical tools for the detection of better protein biomarkers, since the studies are conducted with adequate statistical power and analytical rigor. In the near future, they will be able to fulfill their role in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitz M, Leyland-Jones B (2006) A systems approach to clinical oncology: focus on breast cancer. Proteome Sci 4:5

    Article  PubMed  Google Scholar 

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120

    Article  PubMed  CAS  Google Scholar 

  • Andersson T, Johansson M, Bolmsjo G, James P (2007) Automating MALDI sample plate loading. J Proteome Res 6:894–896

    Article  PubMed  CAS  Google Scholar 

  • Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD (2002) Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res 62:1541–1548

    PubMed  CAS  Google Scholar 

  • Bergman AC, Benjamin T, Alaiya A et al (2000) Identification of gel-separated tumor marker proteins by mass spectrometry. Electrophoresis 21:679–686

    Article  PubMed  CAS  Google Scholar 

  • Bertucci F, Goncalves A (2008) Clinical proteomics and breast cancer: strategies for diagnostic and therapeutic biomarker discovery. Future Oncol 4:271–287

    Article  PubMed  CAS  Google Scholar 

  • Bertucci F, Birnbaum D, Goncalves A (2006) Proteomics of breast cancer: principles and potential clinical applications. Mol Cell Proteomics 5:1772–1786

    Article  PubMed  CAS  Google Scholar 

  • Bouchal P, Roumeliotis T, Hrstka R, Nenutil R, Vojtesek B, Garbis SD (2009) Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J Proteome Res 8:362–373

    Article  PubMed  CAS  Google Scholar 

  • Brozkova K, Budinska E, Bouchal P et al (2008) Surface-enhanced laser desorption/ionization time-of-flight proteomic profiling of breast carcinomas identifies clinicopathologically relevant groups of patients similar to previously defined clusters from cDNA expression. Breast Cancer Res 10:R48

    PubMed  Google Scholar 

  • Callesen AK, Vach W, Jorgensen PE et al (2008) Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies: a systematic review. J Proteome Res 7:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  PubMed  CAS  Google Scholar 

  • Cornett DS, Mobley JA, Dias EC et al (2006) A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol Cell Proteomics 5:1975–1983

    Article  PubMed  CAS  Google Scholar 

  • Cowherd SM, Espina VA, Petricoin EF III, Liotta LA (2004) Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays. Clin Breast Cancer 5:385–392

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Overall CM (2007) Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol Cell Proteomics 6:611–623

    Article  PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AT, Evron E, Umbricht CB et al (2000) High frequency of hypermethylation at the 14-3-3σ locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97:6049–6054

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  PubMed  CAS  Google Scholar 

  • Gast MC, Schellens JH, Beijnen JH (2009) Clinical proteomics in breast cancer: a review. Breast Cancer Res Treat 116:17–29

    Article  PubMed  CAS  Google Scholar 

  • Gilabert M, Audebert S, Viens P, Borg JP, Bertucci F, Goncalves A (2010) Proteomics and breast cancer: a search for novel diagnostic and theragnostic biomarkers. Bull Cancer 97:321–339

    PubMed  CAS  Google Scholar 

  • Giometti CS, Tollaksen SL, Chubb C, Williams C, Huberman E (1995) Analysis of proteins from human breast epithelial cells using two-dimensional gel electrophoresis. Electrophoresis 16:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Goncalves A, Charafe-Jauffret E, Bertucci F et al (2008) Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics 7:1420–1433

    Article  PubMed  CAS  Google Scholar 

  • Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4:377–383

    Article  PubMed  CAS  Google Scholar 

  • Habermann JK, Roblick UJ, Luke BT et al (2006) Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors. Gastroenterology 131:1020–1029; quiz 284

    Google Scholar 

  • Hondermarck H (2003) Breast cancer: when proteomics challenges biological complexity. Mol Cell Proteomics 2:281–291

    PubMed  CAS  Google Scholar 

  • Hondermarck H, Vercoutter-Edouart AS, Revillion F et al (2001) Proteomics of breast cancer for marker discovery and signal pathway profiling. Proteomics 1:1216–1232

    Article  PubMed  CAS  Google Scholar 

  • Hondermarck H, Tastet C, Yazidi-Belkoura El et al (2008) Proteomics of brest cancer: the quest for markers and therapeutic targets. J Proteome Res 7:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Hudelist G, Singer CF, Pischinger KI et al (2006) Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics 6:1989–2002

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  • Kabbage M, Chahed K, Hamrita B et al (2008) Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium pH gradient electrophoresis and mass spectrometry. J Biomed Biotechnol 2008:564127

    Article  PubMed  Google Scholar 

  • Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063

    Article  PubMed  CAS  Google Scholar 

  • Kamradt MC, Lu M, Werner ME et al (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–11066

    Article  PubMed  CAS  Google Scholar 

  • King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646

    Article  PubMed  CAS  Google Scholar 

  • Leong S, Christopherson RI, Baxter RC (2007) Profiling of apoptotic changes in human breast cancer cells using SELDI-TOF mass spectrometry. Cell Physiol Biochem 20:579–590

    Article  PubMed  CAS  Google Scholar 

  • Li DQ, Wang L, Fei F, Hou YF et al (2006) Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6:3352–3368

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu H, Han B, Zhang JT (2006) Identification of 14-3-3sigma as contributor to drug resistance in human breast cancer cells using functional proteomic analysis. Cancer Res 66:3248–3255

    Article  PubMed  CAS  Google Scholar 

  • Martini PG, Delage-Mourroux R, Kraichely DM et al (2000) Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity. Mol Cell Biol 20:6224–6232

    Article  PubMed  CAS  Google Scholar 

  • Mian S, Ball G, Hombuckle J et al (2003) A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics 3:1725–1737

    Article  PubMed  CAS  Google Scholar 

  • Miller I, Crawford J, Gianazza E (2006) Protein stains for proteomic applications: which, when, why? Proteomics 6:5385–5408

    Article  PubMed  CAS  Google Scholar 

  • Mitrunen K, Hirvonen A (2003) Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res 544:9–41

    Article  PubMed  CAS  Google Scholar 

  • Moreira JM, Ohlsson G, Rank FE, Celis JE (2005) Down-regulation of the tumor suppressor protein 14-3-3sigma is a sporadic event in cancer of the breast. Mol Cell Proteomics 4:555–569

    Article  PubMed  CAS  Google Scholar 

  • Moyano JV, Evans JR, Chen F et al (2006) Alpha B-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Huang SK, Martinez SR et al (2006) Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis. Cancer Res 66:11825–11830

    Article  PubMed  CAS  Google Scholar 

  • Nesvizhskii AI (2007) Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367:87–119

    PubMed  CAS  Google Scholar 

  • Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA 100:9330–9335

    Article  PubMed  Google Scholar 

  • Page MJ, Amess B, Townsend RR et al (1999) Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc Natl Acad Sci USA 96:12589–12594

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  Google Scholar 

  • Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 771:3–31

    Article  PubMed  CAS  Google Scholar 

  • Peppercorn J, Perou CM, Carey LA (2008) Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest 26:1–10

    Article  PubMed  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Pucci-Minafra I, Cancemi P, Marabeti MR et al (2007) Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts. Proteomics Clin Appl 1:118–129

    Article  PubMed  CAS  Google Scholar 

  • Reis-Filho JS, Lakhani SR (2003) The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res 5:313–319

    Article  PubMed  CAS  Google Scholar 

  • Reis-Filho JS, Lakhani SR (2008) Breast cancer special types: why bother? J Pathol 216:394–398

    Article  PubMed  CAS  Google Scholar 

  • Reis-Filho JS, Tutt NA (2008) Triple negative tumours: a critical review. Histopathology 52:108–118

    Article  PubMed  CAS  Google Scholar 

  • Ricolleau G, Charbonnel C, Lode L et al (2006) Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics 6:1963–1975

    Article  PubMed  CAS  Google Scholar 

  • Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:341–348

    PubMed  Google Scholar 

  • Sanders ME, Dias EC, Xu BJ et al (2008) Differentiating proteomic biomarkers in breast cancer by laser capture microdissection and MALDI MS. J Proteome Res 7:1500–1507

    Article  PubMed  CAS  Google Scholar 

  • Schulz DM, Bollner C, Thomas G et al (2009) Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry. J Proteome Res 8:3430–3438

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman M, Clavreul N, Huang H, McComb ME, Costello CE, Cohen RA (2007) Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic Biol Med 42:823–829

    Article  PubMed  CAS  Google Scholar 

  • Simpson RJ, Bernhard OK, Greening DW, Moritz RL (2008) Proteomics-driven cancer biomarker discovery: looking to the future. Curr Opin Chem Biol 12:72–77

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  • Stastny J, Prasad R, Fosslien E (1984) Tissue proteins in breast cancer, as studied by use of two-dimensional electrophoresis. Clin Chem 30:1914–1918

    PubMed  CAS  Google Scholar 

  • Sutton CW, Rustogi N, Gurkan C et al (2010) Quantitative proteomic profiling of matched normal and tumor breast tissues. J Proteome Res 9:3891–3902

    Article  PubMed  CAS  Google Scholar 

  • Trask DK, Band V, Zajchowski DA, Yaswen P, Suh T, Sager R (1990) Keratins as markers that distinguish normal and tumor-derived mammary epithelial cells. Proc Natl Acad Sci USA 87:2319–2323

    Article  PubMed  CAS  Google Scholar 

  • Traub F, Feist H, Kreipe HH, Pich A (2005) SELDI-MS-based expression profiling of ductal invasive and lobular invasive human breast carcinomas. Pathol Res Pract 201:763–770

    Article  PubMed  CAS  Google Scholar 

  • Traub F, Jost M, Hess R et al (2006) Peptidomic analysis of breast cancer reveals a putative surrogate marker for estrogen receptor-negative carcinomas. Lab Invest 86:246–253

    Article  PubMed  CAS  Google Scholar 

  • Tsitsilonis OE, Bekris E, Voutsas IF et al (1998) The prognostic value of alpha-thymosins in breast cancer. Anticancer Res 18:1501–1508

    PubMed  CAS  Google Scholar 

  • Umar A, Dalebout JC, Timmermans AM, Foekens JA, Luider TM (2005) Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry. Proteomics 5:2680–2688

    Article  PubMed  CAS  Google Scholar 

  • Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20:3348–3353

    Article  PubMed  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ et al (2003) Expression profiling predicts outcome in breast cancer. Breast Cancer Res 5:57–58

    Article  Google Scholar 

  • Vercoutter-Edouart AS, Lemoine J, Le Bourhis X et al (2001) Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells. Cancer Res 61:76–80

    PubMed  CAS  Google Scholar 

  • Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220:263–280

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Goode EL, Ladiges WC, Ulrich CM (2005) Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog 42:127–141

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    PubMed  CAS  Google Scholar 

  • Wirth PJ (1989) Specific polypeptide differences in normal versus malignant breast tissue by two-dimensional electrophoresis. Electrophoresis 10:543–554

    Article  PubMed  CAS  Google Scholar 

  • Worland PJ, Bronzert D, Dickson RB et al (1989) Secreted and cellular polypeptide patterns of MCF-7 human breast cancer cells following either estrogen stimulation or v-H-ras transfection. Cancer Res 49:51–57

    PubMed  CAS  Google Scholar 

  • Wright GL Jr (1974) Two-dimensional acrylamide gel electrophoresis of cancer-patient serum proteins. Ann Clin Lab Sci 4:281–293

    PubMed  CAS  Google Scholar 

  • Wulfkuhle JD, McLean KC, Paweletz CP et al (2001) New approaches to proteomic analysis of breast cancer. Proteomics 1:1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Yiu CC, Sasano H, Ono K, Chow LW (2010a) Changes in protein expressions after neoadjuvant use of aromatase inhibitors in primary breast cancer: a proteomic approach to search for potential biomarkers to predict response or resistance. Expert Opin Investig Drugs 19(Suppl 1):S79–S89

    Google Scholar 

  • Yiu CC, Chanplakorn N, Chan MS et al (2010b) Down regulation of Heat Shock Protein 70 (HSP-70) correlated with responsiveness to neoadjuvant aromatase inhibitor (AI) therapy in breast cancer patients. Anticancer Res 30:3465–3472

    PubMed  CAS  Google Scholar 

  • Zeidan BA, Cutress RI, Murray N et al (2009) Proteomic analysis of archival breast cancer serum. Cancer Genomics Proteomics 6:141–147

    PubMed  CAS  Google Scholar 

  • Zhang F, Chen JY (2010) Discovery of pathway biomarkers from coupled proteomics and systems biology methods. BMC Genomics 11(Suppl 2):512

    Article  Google Scholar 

  • Zhang Z, Bast RC Jr, Yu Y et al (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64:5882–5890

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Newcomb PA, Egan KM et al (2006) Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15:353–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to RENORBIO Postgraduate Program for its incentive to the research in the northeast region of Brazil.

Conflict of interest

There is no conflict of interest for any of the authors including any financial or personal with other people or organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. C. G. N. Galvão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvão, E.R.C.G.N., Martins, L.M.S., Ibiapina, J.O. et al. Breast cancer proteomics: a review for clinicians. J Cancer Res Clin Oncol 137, 915–925 (2011). https://doi.org/10.1007/s00432-011-0978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-011-0978-0

Keywords

Navigation