Skip to main content

Advertisement

Log in

Expression of the Wnt antagonist DKK3 is frequently suppressed in sporadic epithelial ovarian cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The Wnt pathway plays an important role in embryonic development, and defects in this pathway have been implicated in the tumorigenesis. The Dickkopf 3 (DKK3) is a putative Wnt signaling inhibitor that is frequently inactivated in human cancers. However, the expression of DKK3 in ovarian cancer remains unknown.

Methods

We investigated the expression of DKK3 in silico using the Digital Differential Display. DKK3 mRNA expression was also analyzed by real-time RT-PCR in ovarian carcinomas and normal ovarian tissues. DKK3 protein expression was determined by immunohistochemistry in the same ovarian carcinomas and normal ovarian tissues.

Results

A significantly reduced expression of DKK3 (P < 0.05) was found after comparison of normal ovary- and tumor-derived libraries in the Cancer Genome Anatomy Project (CGAP). DKK3 mRNA expression was reduced in 63% (35 of 56) of tumors compared with normal ovarian samples (P < 0.02). Analysis of 13 matched pairs of ovarian carcinomas and adjacent normal tissues showed significant transcriptional downregulation of DKK3 (>twofold) in 9 paired carcinomas (69%). Loss or weak membranous expression of DKK3 protein was observed in 66% of ovarian cancers (37 of 56) including all tumors with low transcriptional level of DKK3 gene analyzed by real-time PCR.

Conclusions

To our best knowledge, this is the first time to demonstrate altered expression of DKK3 in ovarian cancer. The latter could be a relevant mechanism for the activation of the Wnt pathway in the carcinogenesis of ovarian cancer but additional studies are required to elucidate the function of DKK3 silencing in ovarian carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An HX, Beckmann MW, Reifenberger G, Bender HG, Niederacher D (1999) Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am J Pathol 154:113–118

    Article  PubMed  CAS  Google Scholar 

  • Badiglian Filho L, Oshima CT, De Oliveira Lima F, De Oliveira Costa H, De Sousa Damião R, Gomes TS, Gonçalves WJ (2009) Canonical and noncanonical Wnt pathway: a comparison among normal ovary, benign ovarian tumor and ovarian cancer. Oncol Rep 21:313–320

    PubMed  Google Scholar 

  • Bast RC Jr, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428

    Article  PubMed  CAS  Google Scholar 

  • Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351:2519–2529

    Article  PubMed  CAS  Google Scholar 

  • Dahl E, Sadr-Nabavi A, Klopocki E, Betz B, Grube S, Kreutzfeld R, Himmelfarb M, An HX, Gelling S, Klaman I, Hinzmann B, Kristiansen G, Grützmann R, Kuner R, Petschke B, Rhiem K, Wiechen K, Sers C, Wiestler O, Schneider A, Höfler H, Nährig J, Dietel M, Schäfer R, Rosenthal A, Schmutzler R, Dürst M, Meindl A, Niederacher D (2005) Systematic identification and molecular characterization of genes differentially expressed in breast and ovarian cancer. J Pathol 205:21–28

    Article  PubMed  CAS  Google Scholar 

  • Edamura K, Nasu Y, Takaishi M, Kobayashi T, Abarzua F, Sakaguchi M, Kashiwakura Y, Ebara S, Saika T, Watanabe M, Huh NH, Kumon H (2007) Adenovirus-mediated REIC/Dkk-3 gene transfer inhibits tumor growth and metastasis in an orthotopic prostate cancer model. Cancer Gene Ther 14:765–772

    Article  PubMed  CAS  Google Scholar 

  • Fink L, Seeger W, Ermert L, Hänze J, Stahl U, Grimminger F, Kummer W, Bohle RM (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4:1329–1333

    Article  PubMed  CAS  Google Scholar 

  • Fong D, Hermann M, Untergasser G, Pirkebner D, Draxl A, Heitz M, Moser P, Margreiter R, Hengster P, Amberger A (2009) Dkk-3 expression in the tumor endothelium: a novel prognostic marker of pancreatic adenocarcinomas. Cancer Sci 100:1414–1420

    Article  PubMed  CAS  Google Scholar 

  • Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF (2008) Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer 18:954–962

    Article  PubMed  CAS  Google Scholar 

  • He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  PubMed  CAS  Google Scholar 

  • Henderson DJ, Phillips HM, Chaudhry B (2006) Vang-like 2 and noncanonical Wnt signaling in outflow tract development. Trends Cardiovasc 16:38–45

    Article  CAS  Google Scholar 

  • Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA, Mazza B, Meyers PA, Gorlick R (2004) Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64:2734–2739

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SY, Hsieh PS, Chiu CT, Chen WY (2004) Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 23:9183–9189

    PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  • Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  PubMed  CAS  Google Scholar 

  • Kawano Y, Kitaoka M, Hamada Y, Walker MM, Waxman J, Kypta RM (2006) Regulation of prostate cell growth and morphogenesis by Dickkopf-3. Oncogene 25:6528–6537

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Watanabe M, Sakaguchi M, Ogasawara Y, Ochiai K, Nasu Y, Doihara H, Kashiwakura Y, Huh NH, Kumon H, Date H (2009) REIC/Dkk-3 overexpression downregulates P-glycoprotein in multidrug-resistant MCF7/ADR cells and induces apoptosis in breast cancer. Cancer Gene Ther 16:65–72

    Article  PubMed  CAS  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  PubMed  CAS  Google Scholar 

  • Kurman RJ, Shih IEM (2008) Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol 27:151–160

    PubMed  Google Scholar 

  • Kurose K, Sakaguchi M, Nasu Y, Ebara S, Kaku H, Kariyama R, Arao Y, Miyazaki M, Tsushima T, Namba M, Kumon H, Huh NH (2004) Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J Urol 171:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H (2005) Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65:4218–4227

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:321–325

    Article  PubMed  CAS  Google Scholar 

  • Nierhs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481

    Article  Google Scholar 

  • Nozaki I, Tsuji T, Iijima O, Ohmura Y, Andou A, Miyazaki M, Shimizu N, Namba M (2001) Reduced expression of REIC/Dkk-3 gene in non-small cell lung cancer. Int J Oncol 19:117–121

    PubMed  CAS  Google Scholar 

  • Palacios J, Gamallo C (1998) Mutations in the beta-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res 58:1344–1347

    PubMed  CAS  Google Scholar 

  • Rask K, Nilsson A, Brannstrom M et al (2003) Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer 89:1298–1304

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Barrios M, Andreu EJ, Prosper F, Heiniger A, Torres A (2004) Transcriptional silencing of the Dickkopfs-3 (Dkk-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia. Br J Cancer 91:707–713

    PubMed  CAS  Google Scholar 

  • Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S, Takagi H, Sogabe Y, Sasaki Y, Idogawa M, Sonoda T, Mori M, Imai K, Tokino T, Shinomura Y (2007) Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28:2459–2466

    Article  PubMed  CAS  Google Scholar 

  • Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R (2000) Cancer gene discovery using digital differential display. Cancer Res 60:4037–4043

    PubMed  CAS  Google Scholar 

  • Tada M, Concha ML, Heisenberg CP (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13:251–260

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto R, Abarzua F, Sakaguchi M, Takaishi M, Nasu Y, Kumon H, Huh NH (2007) REIC/Dkk-3 as a potential gene therapeutic agent against human testicular cancer. Int J Mol Med 19:363–368

    PubMed  CAS  Google Scholar 

  • Tsuji T, Nozaki I, Miyazaki M, Sakaguchi M, Pu H, Hamazaki Y, Iijima O, Namba M (2001) Antiproliferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem Biophys Res Commun 289:257–263

    Article  PubMed  CAS  Google Scholar 

  • Urakami S, Shiina H, Enokida H, Kawakami T, Kawamoto K, Hirata H, Tanaka Y, Kikuno N, Nakagawa M, Igawa M, Dahiya R (2006) Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin Cancer Res 12:2109–2116

    Article  PubMed  CAS  Google Scholar 

  • Veeck J, Bektas N, Hartmann A, Kristiansen G, Heindrichs U, Knüchel R, Dahl E (2008) Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours. Breast Cancer Res 10:R82

    Article  PubMed  Google Scholar 

  • Wright K, Wilson P, Morland S, Campbell I, Walsh M, Hurst T, Ward B, Cummings M, Chenevix-Trench G (1999) beta-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int J Cancer 82:625–629

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Zhai Y, Fearon ER, Cho KR (2001) Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61:8247–8255

    PubMed  CAS  Google Scholar 

  • Yue W, Sun Q, Dacic S, Landreneau RJ, Siegfried JM, Yu J, Zhang L (2008) Downregulation of Dkk3 activates beta-catenin/TCF-4 signaling in lung cancer. Carcinogenesis 29:84–92

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Wu R, Schwartz DR, Darrah D, Reed H, Kolligs FT, Nieman MT, Fearon ER, Cho KR (2002) Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol 160:1229–1238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to our technicians, H. Geißel and R. Wassmuth from the Department of Neuropathology, Philipps-University Marburg, and Mrs. U. Grolik from the Department of Obstetrics and Gynaecology, Heinrich-Heine University, Düsseldorf, Germany, for their expert technical assistance.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Xiang An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, A., Fokas, E., Wang, LF. et al. Expression of the Wnt antagonist DKK3 is frequently suppressed in sporadic epithelial ovarian cancer. J Cancer Res Clin Oncol 137, 621–627 (2011). https://doi.org/10.1007/s00432-010-0916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0916-6

Keywords

Navigation