Skip to main content

Advertisement

Log in

PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

During colorectal cancer progression, the loss of differentiation and cell–cell adhesion as well as a higher migratory potential are well-defined features; however, the signaling mechanism governing these events is not fully elucidated. The aim of this study was to investigate the role that PI3K and downstream effectors play in controlling colon cancer malignant phenotypes.

Methods

HCT-116 cells, a human model of colon cancer, which are highly metastatic and undifferentiated, were treated with LY294002, a specific inhibitor of PI3K. Cell differentiation and apical junctional complex (AJC) formation were monitored using alkaline phosphatase and electron microscopy analysis. Immunofluorescence and Western blotting were used to accompany the subcellular localization of AJC proteins. PI3K downstream molecules were analyzed by western blotting, and proliferation, wound healing, and colony formation techniques to determine malignant phenotype alterations.

Results

PI3K inhibition increased alkaline phosphatase activity, led to an enterocyte-like growth and formed a functional AJC. LY294002 treatment was able to recruit E-cadherin, β-catenin, claudin-3, and ZO-1 to the cell–cell contact region, and this effect was essential for AJC assembly and association of these proteins to the cytoskeleton. Furthermore, we provided evidence that PI3K inhibition leads to a decrease in p-Akt and p-GSK-3β and increased p-β-catenin levels, which in turn controlled cell proliferation, motility, and colony formation.

Conclusion

Our results demonstrate that PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of HCT-116 colorectal cancer cells, which could constitute a potential therapeutic target for treatment of this cancer type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657. doi:10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  • Cereijido M, Contreras RG, Shoshani L, Florez-Benitez D, Larre I (2008) Tight junction and polarity interaction in the transporting epithelial phenotype. Biochim Biophys Acta 1778:770–793. doi:10.1016/j.bbamem.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  • Chae B, Yang KM, Kim TI, Kim WH (2009) Adherens junction-dependent PI3K/Akt activation induces resistance to genotoxin-induced cell death in differentiated intestinal epithelial cells. Biochem Biophys Res Commun 378:738–743. doi:10.1016/j.bbrc.2008.11.120

    Article  CAS  PubMed  Google Scholar 

  • Chantre I, Barbat A, Dussaulx E, Brattain MG, Zweibaun A (1988) Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell line. Cancer Res 48:1936–1942

    Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  CAS  PubMed  Google Scholar 

  • Gavert N, Ben-Ze’ev A (2008) Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med 14:199–209. doi:10.1016/j.molmed.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmark of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • He XC, Zhang J, Tong G, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121. doi:10.1038/ng1430

    Article  CAS  PubMed  Google Scholar 

  • Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558. doi:10.1016/j.ceb.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  • Jiao W, Miyazaki K, Kitajima Y (2001) Exogenous expression of E-cadherin in gallbladder carcinoma cell line G-415 restores its cellular polarity and differentiation. Int J Oncol 19:1099–1107

    CAS  PubMed  Google Scholar 

  • Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH (2004) Involvement of the PI3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 25:241–248

    Article  CAS  PubMed  Google Scholar 

  • Lapham A, Adams JE, Paterson A, Lee M, Brimmell M, Packham G (2009) The Bcl-w promoter is activated by beta-catenin/TCF4 in human colorectal carcinoma cells. Gene 432:112–117. doi:10.1016/j.gene.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  • Laprise P, Chailler P, Houde M, Beaulieu JF, Boucher MJ, Rivard N (2002) Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J Biol Chem 277:8226–8234. doi:10.1074/jbc.M110235200

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Guh JY, MoJF ChiouSJ, Hwang CC, Chuang LY (2008) Advanced glycation end-product-inhibited cell proliferation and protein expression of beta-catenin and cyclin D1 are dependent on glycogen synthase kinase 3beta in LLC-PK1 cells. Arch Biochem Biophys 477:27–32. doi:10.1016/j.abb.2008.04.025

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J Cell Biol 164:603–612. doi:10.1083/jcb.200306090

    Article  CAS  PubMed  Google Scholar 

  • Matter K, Balda MS (2007) Epithelial tight junctions, gene expression and nucleo-junctional interplay. J Cell Sci 120:1505–1511. doi:10.1242/10.1242/jcs.005975

    Article  CAS  PubMed  Google Scholar 

  • Miller SJ, Lavker RM, Sun T (2005) Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochim Biophys Acta 1756:25–52. doi:10.1016/j.bbcan.2005.07.003

    CAS  PubMed  Google Scholar 

  • Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakeyama M, Azuma T, Yamaoka Y, Yahiro K, Moss J, Hirayama T (2009) Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Biol Chem 284:1612–1619. doi:10.1074/jbc.M806981200

    Article  CAS  PubMed  Google Scholar 

  • Pylayeva Y, Gillen KM, Gerald W, Beggs HE, Reichardt LF, Giancotti FG (2009) Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest 119:252–266. doi:10.1172/JCI37160

    CAS  PubMed  Google Scholar 

  • Rychahou PG, Jackson LN, Silva SR, Rajaraman S, Evers BM (2006) Targeted molecular therapy of the PI3K pathway: therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann Surg 243:833–842. doi:10.1097/01.sla.0000220040.66012.a9

    Article  PubMed  Google Scholar 

  • Samuel Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82. doi:10.1097/01.cco.0000198021.99347.b9

    Article  Google Scholar 

  • Sheng H, Shao J, Townsend CM Jr, Evers BM (2003) Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut 52:1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Simonn-Assmann P, Turck N, Sidhoum-Jenny M, Gradwohl G, Kedinger M (2007) In vitro models of intestinal cell differentiation. Cell Biol Toxicol 23:241–256. doi:10.1007/s10565-006-0175-0

    Article  Google Scholar 

  • Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinaseB/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16:461–466. doi:10.1016/j.tcb.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  • Tanos B, Rodriguez-Boulan E (2008) The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 27:6939–6957. doi:10.1038/onc.2008.345

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142. doi:10.1038/nrm1835

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27:6930–6938. doi:10.1038/onc.2008.344

    Article  CAS  PubMed  Google Scholar 

  • Vaidya RJ, Ray RM, Johnson LR (2006) Akt-mediated GSK-3β inhibition prevents migration of polyamine-depleted intestinal epithelial cells via Rac1. Cell Mol Life Sci 63:2871–2879. doi:10.1007/s00018-006-6379-x

    Article  CAS  PubMed  Google Scholar 

  • Vlad A, Röhrs S, Klein-Hitpass L, Müller O (2008) The first five years of the Wnt targetome. Cell Signal 20:795–802. doi:10.1016/j.cellsig.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  • Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H–1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    CAS  PubMed  Google Scholar 

  • Wang Q, Wang X, Hernandez A, Kim S, Evers BM (2001) Inhibition of the phosphatidylinositol 3-kinase pathway contributes to HT29 and Caco-2 intestinal cell differentiation. Gastroenterology 120:1381–1392. doi:10.1053/gast.2001.24044

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Rajput A, Kan JL, Rose R, Liu XQ, Kuropatwinski K, Hauser J, Beko A, Dominquez I, Sharratt EA, Brattain L, Levea C, Sun FL, Keane DM, Gibson NW, Brattain MG (2009) Knockdown of Ron kinase inhibits mutant phosphatidylinositol 3-kinase and reduces metastasis in human colon carcinoma. J Biol Chem 284:10912–10922. doi:10.1074/jbc.M809551200

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang S, Weng D, Xing H, Song X, Zhu T, Xia X, Weng Y, Xu G, Meng L, Zhou J, Ma D (2008) Reversal of the malignant phenotype of ovarian cancer A2780 cells through transfection with wild-type PTEN gene. Cancer Lett 271:205–214. doi:10.1016/j.canlet.2008.06.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Fundação do Câncer, Ministério da Saúde (MS-Brazil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Programa de Cooperação INCA/FIOCRUZ. We thank Dr. Marcelo Pelajo of the Pathology Laboratory, Fiocruz for assistance with confocal microscopy.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Andres Morgado-Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Araújo, W.M., Vidal, F.C.B., de Souza, W.F. et al. PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. J Cancer Res Clin Oncol 136, 1773–1782 (2010). https://doi.org/10.1007/s00432-010-0836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0836-5

Keywords

Navigation