Skip to main content

Advertisement

Log in

(−)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Chondrosarcoma is a soft tissue sarcoma with a poor prognosis that is unresponsive to conventional chemotherapy. The regulatory mechanisms for the rapid proliferation of chondrosarcoma cells and the particular aggressiveness of this sarcoma remain poorly understood. In this study, we investigate the effect of epigallocatechin-3-gallate (EGCG) on growth and apoptosis of chondrosarcoma cells.

Methods

The chondrosarcoma cell lines, SW1353 and CRL-7891, were cultured with and without EGCG. The MTT assay was used to test the cytotoxicity of EGCG. Flow cytometry and DAPI staining were used to observe cell apoptosis caused by EGCG. To explore the effect of EGCG on the Indian Hedgehog signaling pathway and apoptosis-related proteins, RT-PCR and Western blotting were used to detect the expression of PTCH and Gli-1 in the Indian Hedgehog signaling pathway. Meanwhile, expression of Bcl-2, Bax, and caspase-3 were also evaluated by Western blot analysis.

Results

EGCG effectively inhibited cellular proliferation and induced apoptosis of SW1353 and CRL-7891. EGCG inhibited the human Indian Hedgehog pathway, down-regulated PTCH and Gli-1 levels, and induced apoptosis as confirmed by DAPI staining followed by flow cytometry. Protein expression levels of caspase-3 were unchanged in response to EGCG treatment in chondrosarcoma cells; however, the expression levels of Bcl-2 were significantly decreased and the levels of Bax were significantly increased.

Conclusions

Our findings demonstrate that EGCG is effective for growth inhibition of a chondrosarcoma cell lines in vitro, and suggest that EGCG may be a new therapeutic option for patients with chondrosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Benoist-Lasselin C, De Margerie E, Gibbs L et al (2006) Defective chondrocyte proliferation and differentiation in osteochondromas of MHE patients. Bone 39:17–26. doi:10.1016/j.bone.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  • Damron TA, Ward WG, Stewart A et al (2007) Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma: National Cancer Data Base Report. Clin Orthop Relat Res 459:40–47. doi:10.1097/BLO.0b013e318059b8c9

    Article  PubMed  Google Scholar 

  • Fiorenza F, Abudu A, Grimer RJ et al (2002) Risk factors for survival and local control in chondrosarcoma of bone. J Bone Joint Surg Br 84:93–99

    Article  CAS  PubMed  Google Scholar 

  • Fujiki H (2005) Green tea: Health benefits as cancer preventive for humans. Chem Rec 5:119–132

    Article  CAS  PubMed  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Lambert JD, Chin KV, Yang CS (2004) Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat Res 555:3–19. doi:10.1016/j.mrfmmm.2004.06.040

    CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087. doi:10.1101/gad.938601

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Islam N, Kermode T et al (2000) Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem Biophys Res Commun 21(270):793–797. doi:10.1006/bbrc.2000.2536

    Google Scholar 

  • Katoh Y, Katoh M (2006) Hedgehog signaling pathway and gastrointestinal stem cell signaling network. Int J Mol Med 18:1019–1023

    CAS  PubMed  Google Scholar 

  • Kinzler KW, Bigner SH, Bigner DD et al (1981) Identification of an amplified highly expressed gene in a human glioma. Science 236:70–73

    Article  Google Scholar 

  • Kronenberg HM, Lee K, Lanske B et al (1997) Parathyroid hormone-related protein and Indian Hedgehog control the pace of cartilage differentiation. J Endocrinol 154:S39–S45

    CAS  PubMed  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    CAS  PubMed  Google Scholar 

  • Lauth M, Toftgard R (2007) Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle 6:2458–2463

    CAS  PubMed  Google Scholar 

  • Lee FY, Mankin HJ, Fondren G et al (1999) Chondrosarcoma of bone: an assessment of outcome. J Bone Joint Surg Am 81:326–338

    Article  CAS  PubMed  Google Scholar 

  • Lum L, Beachy PA (2004) The hedgehog response network: sensors, switches, and routers. Science 304:1755–1759

    Article  CAS  PubMed  Google Scholar 

  • Machold R, Hayashi S, Rutlin M et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    Article  CAS  PubMed  Google Scholar 

  • Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267

    Article  CAS  PubMed  Google Scholar 

  • Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33:261–274

    Article  CAS  PubMed  Google Scholar 

  • Peng CL, Guo W, Ji T et al (2009) Sorafenib induces growth inhibition and apoptosis in human synovial sarcoma cells via inhibiting the RAF/MEK/ERK signaling pathway. Cancer Biol Ther 8:1729–1736

    CAS  PubMed  Google Scholar 

  • Riedel RF, Larrier N, Dodd L et al (2009) The clinical management of chondrosarcoma. Curr Treat Options Oncol 10:94–106

    Article  PubMed  Google Scholar 

  • Ruiz i Altaba A, Sanchez P, Dahmane N et al (2002) Gli and hedgehog in cancer: tumours, embryos, and stem cells. Nat Rev Cancer 2:361–372

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Weinstein IB (2005) Modulation of signal transduction by tea catechins and related phytochemicals. Mutat Res 591:147–160. doi:10.1016/j.mrfmmm.2005.04.010

    CAS  PubMed  Google Scholar 

  • Tiet TD, Hopyan S, Nadesan P et al (2006) Constitutive Hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am J Pathol 168:321–330. doi:10.2353/ajpath.2006.050001

    Article  CAS  PubMed  Google Scholar 

  • Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406. doi:10.1038/onc.2008.307

    Article  CAS  PubMed  Google Scholar 

  • Zhao JY, Chen G, Cao D et al (2010) Expression of Gli1 correlates with the transition of breast cancer cells to estrogen-independent growth. Breast Cancer Res Treat 119:39–51. doi:10.1007/s10549-009-0323-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work Supported by Peking University People’s Hospital Research and Development Funds (RDN2007-15).

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Qiang Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, GQ., Yan, TQ., Guo, W. et al. (−)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. J Cancer Res Clin Oncol 136, 1179–1185 (2010). https://doi.org/10.1007/s00432-010-0765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0765-3

Keywords

Navigation