Skip to main content
Log in

The role of p53 as a surrogate marker for chemotherapeutical responsiveness in ovarian cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

In advanced ovarian cancers (OCs), p53 mutations are frequently observed. The objective of this study was to explore the value of the p53 mutational status, using four different techniques, in advanced OC patients as a predictive marker for responsiveness to platinum-based chemotherapy.

Methods

One hundred and four, mostly serous papillary OC specimens were analyzed, of which all received a platinum containing chemotherapy after optimal cyto-reductive surgery. To verify the p53 mutational status, immunohistochemical staining with monoclonal antibodies, functional yeast assay (FASAY), single-strand conformation polymorphism analysis (SSCP) and genomic sequencing was performed in parallel.

Results

Out of ten OC patients [2 low malignant potential (LMP)/8 G1] only two had a mutant p53, whereas eight showed a wild-type p53. 40 out of 63 (G2/3) patients with G2/3 OC showed mutant p53 and 23 patients showed a wild-type pattern. p53 status was significantly different between these two groups (LMP/G1 vs. G2/3) (P = 0.015). A progressive disease after chemotherapy completion was noted in 35.6% of the patients (26 out of 73); in 69.2%, a mutated p53 and in 30.8%, a wild-type p53 was found. Nine (12.3%) patients showed a complete response at the end of the first-line chemotherapy. Out of these nine patients five had a mutated and four a wild-type p53. A partial response was observed in nine (12.3%) patients of whom four had a mutated p53. With respect to response to first-line chemotherapy (six cycles of platinum containing regimen), the p53 status was not predictive; no statistical significance regarding the p53 mutational status was observed when the two extreme groups PD versus PR/CR were compared (P > 0.05).

Conclusion

In this study, the p53 mutational status was not predictive for responsiveness to platinum-based chemotherapy; but p53 was significantly more frequently mutated in poorly differentiated OCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bali A, O’Brien PM et al (2004) Cyclin D1, p53, and p21Waf1/Cip1 expression is predictive of poor clinical outcome in serous epithelial ovarian cancer. Clin Cancer Res 10(15):5168–5177

    Article  PubMed  CAS  Google Scholar 

  • Bartel F, Jung J et al (2008) Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res 14(1):89–96

    Article  PubMed  CAS  Google Scholar 

  • Bolis G, Scarfone G et al (2001) Carboplatin alone vs carboplatin plus epidoxorubicin as second-line therapy for cisplatin- or carboplatin-sensitive ovarian cancer. Gynecol Oncol 81(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Budowle B, Chakraborty R et al (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48(1):137–144

    PubMed  CAS  Google Scholar 

  • Chan JK, Teoh D et al (2008) Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol 109(3):370–376

    Article  PubMed  Google Scholar 

  • Curiel DT, Buchhagen DL et al (1990) A chemical mismatch cleavage method useful for the detection of point mutations in the p53 gene in lung cancer. Am J Respir Cell Mol Biol 3(5):405–411

    PubMed  CAS  Google Scholar 

  • Dehari R, Kurman RJ et al (2007) The development of high-grade serous carcinoma from atypical proliferative (borderline) serous tumors and low-grade micropapillary serous carcinoma: a morphologic and molecular genetic analysis. Am J Surg Pathol 31(7):1007–1012

    Article  PubMed  Google Scholar 

  • du Bois A, Luck HJ et al (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95(17):1320–1329

    PubMed  CAS  Google Scholar 

  • Feng Z, Hu W et al (2007) Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA 104(42):16633–16638

    Article  PubMed  Google Scholar 

  • Flaman JM, Frebourg T et al (1995) A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 92(9):3963–3967

    Article  PubMed  CAS  Google Scholar 

  • Gadducci A, Cianci C et al (2000) p53 status is neither a predictive nor a prognostic variable in patients with advanced ovarian cancer treated with a paclitaxel-based regimen. Anticancer Res 20(6C):4793–4799

    PubMed  CAS  Google Scholar 

  • Gadducci A, Cosio S et al (2002) Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol 23(5):390–396

    PubMed  CAS  Google Scholar 

  • Gadducci A, Di Cristofano C et al (2006) P53 gene status in patients with advanced serous epithelial ovarian cancer in relation to response to paclitaxel-plus platinum-based chemotherapy and long-term clinical outcome. Anticancer Res 26(1B):687–693

    PubMed  CAS  Google Scholar 

  • Galic V, Willner J et al (2007) Common polymorphisms in TP53 and MDM2 and the relationship to TP53 mutations and clinical outcomes in women with ovarian and peritoneal carcinomas. Genes Chromosom Cancer 46(3):239–247

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85(20):7652–7656

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816

    Article  PubMed  CAS  Google Scholar 

  • Heintz AP, Van Oosterom AT et al (1988) The treatment of advanced ovarian carcinoma (I): clinical variables associated with prognosis. Gynecol Oncol 30(3):347–358

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D et al (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Rice K et al (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22(17):3551–3555

    PubMed  CAS  Google Scholar 

  • Holmila R, Husgafvel-Pursiainen K (2006) Analysis of TP53 gene mutations in human lung cancer: comparison of capillary electrophoresis single strand conformation polymorphism assay with denaturing gradient gel electrophoresis and direct sequencing. Cancer Detect Prev 30(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Inga A, Iannone R et al (1997) Determining mutational fingerprints at the human p53 locus with a yeast functional assay: a new tool for molecular epidemiology. Oncogene 14(11):1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Ishioka C, Frebourg T et al (1993) Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 5(2):124–129

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  • Kashiwazaki H, Tonoki H et al (1997) High frequency of p53 mutations in human oral epithelial dysplasia and primary squamous cell carcinoma detected by yeast functional assay. Oncogene 15(22):2667–2674

    Article  PubMed  CAS  Google Scholar 

  • Kupryjanczyk J, Kraszewska E et al (2008) TP53 status and taxane-platinum versus platinum-based therapy in ovarian cancer patients: a non-randomized retrospective study. BMC Cancer 8:27

    Article  PubMed  CAS  Google Scholar 

  • Kurman RJ, Shih IeM (2008) Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol 27(2):151–160

    PubMed  Google Scholar 

  • Lavarino C, Pilotti S et al (2000) p53 gene status and response to platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma. J Clin Oncol 18(23):3936–3945

    PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Momand J et al (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456

    Article  PubMed  CAS  Google Scholar 

  • Lomax ME, Barnes DM et al (1997) Two functional assays employed to detect an unusual mutation in the oligomerisation domain of p53 in a Li-Fraumeni like family. Oncogene 14(15):1869–1874

    Article  PubMed  CAS  Google Scholar 

  • Mazars R, Pujol P et al (1991) p53 mutations in ovarian cancer: a late event? Oncogene 6(9):1685–1690

    PubMed  CAS  Google Scholar 

  • Meinhold-Heerlein I, Ninci E et al (2001) Evaluation of methods to detect p53 mutations in ovarian cancer. Oncology 60(2):176–188

    Article  PubMed  CAS  Google Scholar 

  • Meinhold-Heerlein I, Bauerschlag D et al (2005) Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene 24(6):1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Meinhold-Heerlein I, Bauerschlag D et al (2007) An integrated clinical-genomics approach identifies a candidate multi-analyte blood test for serous ovarian carcinoma. Clin Cancer Res 13(2 Pt 1):458–466

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD et al (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Takebayashi Y et al (2003) Prognostic value of overexpression of p53 in human ovarian carcinoma patients receiving cisplatin. Cancer Lett 192(2):227–235

    Article  PubMed  CAS  Google Scholar 

  • Neijt JP, Engelholm SA et al (2000) Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J Clin Oncol 18(17):3084–3092

    PubMed  CAS  Google Scholar 

  • Offersen BV, Alsner J et al (2008) A comparison among HER2, TP53, PAI-1, angiogenesis, and proliferation activity as prognostic variables in tumours from 408 patients diagnosed with early breast cancer. Acta Oncol 47(4):618–632

    Article  PubMed  CAS  Google Scholar 

  • Ozols RF, Bundy BN et al (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21(17):3194–3200

    Article  PubMed  CAS  Google Scholar 

  • Pfisterer J, Plante M et al (2006) Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG. J Clin Oncol 24(29):4699–4707

    Article  PubMed  CAS  Google Scholar 

  • Prives C, Hall PA (1999) The p53 pathway. J Pathol 187(1):112–126

    Article  PubMed  CAS  Google Scholar 

  • Psyrri A, Kountourakis P et al (2007) Analysis of p53 protein expression levels on ovarian cancer tissue microarray using automated quantitative analysis elucidates prognostic patient subsets. Ann Oncol 18(4):709–715

    Article  PubMed  CAS  Google Scholar 

  • Rentrop M, Knapp B et al (1986) Aminoalkylsilane-treated glass slides as support for in situ hybridization of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem J 18(5):271–276

    Article  PubMed  CAS  Google Scholar 

  • Salani R, Kurman RJ et al (2008) Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int J Gynecol Cancer 18(3):487–491

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schuijer M, Berns EM (2003) TP53 and ovarian cancer. Hum Mutat 21(3):285–291

    Article  PubMed  CAS  Google Scholar 

  • Shelling AN, Cooke IE et al (1995) The genetic analysis of ovarian cancer. Br J Cancer 72(3):521–527

    PubMed  CAS  Google Scholar 

  • Shih IeM, Kurman RJ (2004) Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 164(5):1511–1518

    PubMed  CAS  Google Scholar 

  • Singer G, Kurman RJ et al (2002) Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol 160(4):1223–1228

    PubMed  CAS  Google Scholar 

  • Singer G, Shih IeM et al (2003) Mutational analysis of K-ras segregates ovarian serous carcinomas into two types: invasive MPSC (low-grade tumor) and conventional serous carcinoma (high-grade tumor). Int J Gynecol Pathol 22(1):37–41

    Article  PubMed  Google Scholar 

  • Singer G, Stohr R et al (2005) Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol 29(2):218–224

    Article  PubMed  Google Scholar 

  • Skilling JS, Sood A et al (1996) An abundance of p53 null mutations in ovarian carcinoma. Oncogene 13(1):117–123

    PubMed  CAS  Google Scholar 

  • Smith ML, Chen IT et al (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266(5189):1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Enomoto T et al (2006) Prognostic significance of p53 mutation in suboptimally resected advanced ovarian carcinoma treated with the combination chemotherapy of paclitaxel and carboplatin. Cancer Lett 241(2):289–300

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D et al (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  PubMed  CAS  Google Scholar 

  • Waridel F, Estreicher A et al (1997) Field cancerisation and polyclonal p53 mutation in the upper aero-digestive tract. Oncogene 14(2):163–169

    Article  PubMed  CAS  Google Scholar 

  • Wen WH, Reles A et al (1999) p53 mutations and expression in ovarian cancers: correlation with overall survival. Int J Gynecol Pathol 18(1):29–41

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

None of the authors has to state a conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk O. Bauerschlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauerschlag, D.O., Schem, C., Weigel, M.T. et al. The role of p53 as a surrogate marker for chemotherapeutical responsiveness in ovarian cancer. J Cancer Res Clin Oncol 136, 79–88 (2010). https://doi.org/10.1007/s00432-009-0639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0639-8

Keywords

Navigation