Skip to main content

Advertisement

Log in

Experimental models of hepatocellular carcinoma: developments and evolution

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. The biological mechanisms of hepatocarcinogenesis and progression are poorly understood. Experimental models of HCC provide valuable tools to evaluate the risk factors, new treatment modalities and biologic characteristics. Under the constant evolution in model design and technology development, new experimental models continue to emerge, including spontaneous models, induced models, viral models, transplantable models, and genetically engineered models. These models are used as tools to investigate basic biological mechanisms of growth and differentiation, oncogene function, and as systems to test new diagnostic and therapeutic approaches. Each model has its own advantages and disadvantages. The progress in HCC model construction and studies are summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe K, Kurata T, Yamada K, Okumura H, Shikata T (1988) Establishment and characterization of a woodchuck hepatocellular carcinoma cell line (WH44KA). Jpn J Cancer Res 79:342–349

    PubMed  CAS  Google Scholar 

  • Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB (1979) Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282:615–616. doi:10.1038/282615a0

    PubMed  CAS  Google Scholar 

  • Ahuja D, Saenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24:7729–7745. doi:10.1038/sj.onc.1209046

    PubMed  CAS  Google Scholar 

  • Albini A (2008) Tumor microenvironment, a dangerous society leading to cancer metastasis. From mechanisms to therapy and prevention. Cancer Metastasis Rev 27:3–4. doi:10.1007/s10555-007-9102-y

    PubMed  Google Scholar 

  • Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11:15–23. doi:10.1006/scbi.2000.0342

    PubMed  CAS  Google Scholar 

  • Alison MR, Lovell MJ (2005) Liver cancer: the role of stem cells. Cell Prolif 38:407–421. doi:10.1111/j.1365-2184.2005.00354.x

    PubMed  CAS  Google Scholar 

  • Armengol C, Tarafa G, Boix L, Solé M, Queralt R, Costa D, Bachs O, Bruix J, Capellá G (2004) Orthotopic implantation of human hepatocellular carcinoma in mice: analysis of tumor progression and establishment of the BCLC-9 cell line. Clin Cancer Res 10:2150–2157. doi:10.1158/1078-0432.CCR-03-1028

    PubMed  CAS  Google Scholar 

  • Babinet C, Farza H, Morello D, Hadchouel M, Pourcel C (1985) Specific expression of hepatitis B surface antigen (HBsAg) in transgenic mice. Science 230:1160–1163. doi:10.1126/science.3865370

    PubMed  CAS  Google Scholar 

  • Baenes JM, Schoental R (1958) Experimental liver tumours. Br Med Bull 14:165–167

    Google Scholar 

  • Barnard GF, Erickson SK, Cooper AD (1986) Regulation of lipoprotein receptors on rat hepatomas in vivo. Biochim Biophys Acta 879:301–312

    PubMed  CAS  Google Scholar 

  • Barone M, Leo DA, Maiorano E, Panella E, Scavo MP, Castellaneta A, Francavilla D, Francioso A (2007) Role of sex steroid hormones on hepatocellular carcinoma (HCC) development in HBV transgenic mice. Dig Liver Dis 39:A23–A24. doi:10.1016/j.dld.2006.12.082

    Google Scholar 

  • Benedict WF, Gielen JE, Owens IS, Niwa A, Bebert DW (1973) Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. IV. Stimulation of the enzyme activity in established cell lines derived from rat or mouse hepatoma and from normal rat liver. Biochem Pharmacol 22:2766–2769. doi:10.1016/0006-2952(73)90138-X

    PubMed  CAS  Google Scholar 

  • Bradlaw JA, Casterline JL Jr (1979) Induction of enzyme activity in cell culture: a rapid screen for detection of planar polychlorinated organic compounds. J Assoc Off Anal Chem 62:904–916

    PubMed  CAS  Google Scholar 

  • Busch SJ, Barnhart RL, Martin GA, Flanagan MA, Jackson RL (1990) Differential regulation of hepatic triglyceride lipase and 3-hydroxy-3-methylglutaryl-CoA reductase gene expression in a human hepatoma cell line, HepG2. J Biol Chem 265:22474–22479

    PubMed  CAS  Google Scholar 

  • Calviello G, Palozza P, Piccioni E, Maggiano N, Frattucci A, Franceschelli P, Bartoli GM (1998) Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer 75:699–705. doi:10.1002/(SICI)1097-0215(19980302)75:5<699::AID-IJC7>3.0.CO;2-U

    PubMed  CAS  Google Scholar 

  • Carbó N, López-Soriano J, Costelli P, Busquets S, Alvarez B, Baccino FM, Quinn LS, López-Soriano FJ, Argilés JM (2000) Interleukin-15 antagonizes muscle protein waste in tumour-bearing rats. Br J Cancer 83:526–531. doi:10.1054/bjoc.2000.1299

    PubMed  Google Scholar 

  • Céspedes MV, Casanova I, Parreño M, Mangues R (2006) Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 8:318–329. doi:10.1007/s12094-006-0177-7

    PubMed  Google Scholar 

  • Cheo DL, Burns DK, Meira LB, Houle JF, Friedberg EC (1999) Mutational inactivation of the xeroderma pigmentosum group C gene confers predisposition to 2-acetylaminofluorene-induced liver and lung cancer and to spontaneous testicular cancer in Trp53−/− mice. Cancer Res 59(4):771–775

    PubMed  CAS  Google Scholar 

  • Chisari FV, Pinkert CA, Milich DR, Filippi P, McLachlan A, Palmiter RD, Brinster RL (1985) A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 230:1157–1160. doi:10.1126/science.3865369

    PubMed  CAS  Google Scholar 

  • Chisari FV, Filippi P, Buras J, McLachlan A, Popper H, Pinkert CA, Palmiter RD, Brinster RL (1987) Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc Natl Acad Sci USA 84:6909–6913. doi:10.1073/pnas.84.19.6909

    PubMed  CAS  Google Scholar 

  • Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, Palmiter RD (1989) Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59:1145–1156. doi:10.1016/0092-8674(89)90770-8

    PubMed  CAS  Google Scholar 

  • Cougot D, Neuveut C, Buendia MA (2005) HBV induced carcinogenesis. J Clin Virol 34:S75–S78. doi:10.1016/S1386-6532(05)80014-9

    PubMed  CAS  Google Scholar 

  • Damo LA, Snyder PW, Franklin DS (2005) Tumorigenesis in p27/p53- and p18/p53-double null mice: functional collaboration between the pRb and p53 pathways. Mol Carcinog 42:109–120. doi:10.1002/mc.20068

    PubMed  CAS  Google Scholar 

  • Darlington GJ, Bernhard HP, Miller RA, Ruddle FH (1980) Expression of liver phenotypes in cultured mouse hepatoma cells. J Natl Cancer Inst 64:809–819

    PubMed  CAS  Google Scholar 

  • Ding SJ, Li Y, Tan YX, Jiang MR, Tian B, Liu YK, Shao XX, Ye SL, Wu JR, Zeng R, Wang HY, Tang ZY, Xia QC (2004) From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics 3:73–81. doi:10.1074/mcp.M300094-MCP200

    PubMed  CAS  Google Scholar 

  • Dragani TA, Manenti G, Farza H, Della Porta G, Tiollais P, Pourcel C (1990) Transgenic mice containing hepatitis B virus sequences are more susceptible to carcinogen-induced hepatocarcinogenesis. Carcinogenesis 11:953–956. doi:10.1093/carcin/11.6.953

    PubMed  CAS  Google Scholar 

  • Dubois N, Bennoun M, Allemand I, Molina T, Grimber G, Daudet-Monsac M, Abelanet R, Briand P (1991) Time-course development of differentiated hepatocarcinoma and lung metastasis in transgenic mice. J Hepatol 13:227–239. doi:10.1016/0168-8278(91)90819-W

    PubMed  CAS  Google Scholar 

  • Dunsford HA, Sell S, Chisari FV (1990) Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res 50:3400–3407

    PubMed  CAS  Google Scholar 

  • Feo F (2007) Models for liver cancer. In: The cancer handbook. Wiley, NY, pp 1–16

  • Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226

    PubMed  CAS  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658. doi:10.1038/nrc2192

    PubMed  CAS  Google Scholar 

  • Frith CH, Wiley L (1982) Spontaneous hepatocellular neoplasms and hepatic hemangiosarcomas in several strains of mice. Lab Anim Sci 32:157–162

    PubMed  CAS  Google Scholar 

  • Futakuchi M, Hirose M, Ogiso T, Kato K, Sano M, Ogawa K, Shirai T (1999) Establishment of an in vivo highly metastatic rat hepatocellular carcinoma model. Jpn J Cancer Res 90:1196–1202

    PubMed  CAS  Google Scholar 

  • Gold LS, Slone TH, Manley NB, Bernstein L (1991) Target organs in chronic bioassays of 533 chemical carcinogens. Environ Health Perspect 93:233–246. doi:10.2307/3431194

    PubMed  CAS  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384. doi:10.1073/pnas.77.12.7380

    PubMed  CAS  Google Scholar 

  • Haggerty DF, Young PL, Popják G, Carnes WH (1973) Phenylalanine hydroxylase in cultured hepatoxytes. I. Hormonal control of enzyme levels. J Biol Chem 248:223–232

    PubMed  CAS  Google Scholar 

  • Hahn FF, Muggenburg BA, Boecker BB (1996) Hepatic neoplasms from internally deposited 144CeCl3. Toxicol Pathol 24:281–289

    PubMed  CAS  Google Scholar 

  • Heffelfinger SC, Hawkins HH, Barrish J, Taylor L, Darlington GJ (1992) SK HEP-1: a human cell line of endothelial origin. In Vitro Cell Dev Biol 28:136–142. doi:10.1007/BF02631017

    Google Scholar 

  • Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359. doi:10.1023/A:1006326203858

    PubMed  CAS  Google Scholar 

  • Hoffman RM (2005) Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy. Methods Mol Med 111:297–322

    PubMed  CAS  Google Scholar 

  • Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    PubMed  CAS  Google Scholar 

  • Jacob JR, Sterczer A, Toshkov IA (2004) Integration of woodchuck hepatitis and N-myc rearrangement determine size and histologic grade of hepatic tumors. Hepatology 39:1008–1016. doi:10.1002/hep.20106

    PubMed  CAS  Google Scholar 

  • Ji XN, Ye SL, Li Y, Tian B, Chen J, Gao DM, Chen J, Bao WH, Liu YK, Tang ZY (2003) Contributions of lung tissue extracts to invasion and migration of human hepatocellular carcinoma cells with various metastatic potentials. J Cancer Res Clin Oncol 129:556–564. doi:10.1007/s00432-003-0475-1

    PubMed  Google Scholar 

  • Jiao W, Miyazaki K, Kitajima Y (2002) Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 86:98–101. doi:10.1038/sj.bjc.6600017

    PubMed  CAS  Google Scholar 

  • Kamegaya Y, Hiasa Y, Zukerberg L, Fowler N, Blackard JT, Lin W, Choe WH, Schmidt EV, Chung RT (2005) Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology 41:660–667. doi:10.1002/hep.20621

    PubMed  Google Scholar 

  • Kerbel RS (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2:S134–S139

    PubMed  CAS  Google Scholar 

  • Killion JJ, Radinsky R, Fidler IJ (1998–1999) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17:279–284. doi:10.1023/A:1006140513233

    Google Scholar 

  • Kim CM, Koike K, Saito I, Miyamura T, Jay G (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351:317–320. doi:10.1038/351317a0

    PubMed  CAS  Google Scholar 

  • Knowles BB, Howe CC, Aden DP, Yeager AE, Korba BE, Cote PJ, Buendia MA, Gerin JL, Tennant BC (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499. doi:10.1126/science.6248960

    PubMed  CAS  Google Scholar 

  • Koike K (1995) Hepatitis B virus HBx gene and hepatocarcinogenesis. Intervirology 38:134–142

    PubMed  CAS  Google Scholar 

  • Koike K, Moriya K, Iino S, Yotsuyanagi H, Endo Y, Miyamura T, Kurokawa K (1994) High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology 19:810–819

    PubMed  CAS  Google Scholar 

  • Koike K, Moriya K, Kimura S (2002) Role of hepatitis C virus in the development of hepatocellular carcinoma: transgenic approach to viral hepatocarcinogenesis. J Gastroenterol Hepatol 17:394–400. doi:10.1046/j.1440-1746.2002.02763.x

    PubMed  CAS  Google Scholar 

  • Kramer MG, Hernandez-Alcoceba R, Qian C, Prieto J (2005) Evaluation of hepatocellular carcinoma models for preclinical studies. Drug Discov Today 2:41–49

    CAS  Google Scholar 

  • Kulas DT, Goldstein BJ, Mooney RA (1996) The transmembrane protein-tyrosine phosphatase LAR modulates signaling by multiple receptor tyrosine kinases. J Biol Chem 271:748–754. doi:10.1074/jbc.271.2.748

    PubMed  CAS  Google Scholar 

  • Lee H, Kawaguchi T, Nomura K, Kitagawa T (1987) Establishment and characterization of a diethylnitrosamine-initiated woodchuck hepatocyte cell line. Hepatology 7:937–940. doi:10.1002/hep.1840070524

    PubMed  CAS  Google Scholar 

  • Lee TH, Finegold MJ, Shen RF, DeMayo JL, Woo SL, Butel JS (1990) Hepatitis B virus transactivator X protein is not tumorigenic in transgenic mice. J Virol 64:5939–5947

    PubMed  CAS  Google Scholar 

  • Lee JH, Ku JL, Park YJ, Lee KU, Kim WH, Park JG (1999) Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World J Gastroenterol 5:289–295

    PubMed  CAS  Google Scholar 

  • Leenders MW, Nijkamp MW, Borel Rinkes IH (2008) Mouse models in liver cancer research: A review of current literature. World J Gastroenterol 14:6915–6923. doi:10.3748/wjg.14.6915

    PubMed  CAS  Google Scholar 

  • Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y, Okuda M, Gosert R, Xiao SY, Weinman SA, Lemon SM (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122:352–365. doi:10.1053/gast.2002.31001

    PubMed  CAS  Google Scholar 

  • Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25:3834–3847. doi:10.1038/sj.onc.1209562

    PubMed  CAS  Google Scholar 

  • Li HF, Ling MY, Xie Y, Xie H (1998) Establishment of a lymph node metastatic model of mouse hepatocellular carcinoma Hca-F cells in C3H/Hej mice. Oncol Res 10:569–573

    PubMed  CAS  Google Scholar 

  • Li Y, Tang Y, Ye L, Liu YK, Chen J, Xue Q, Chen J, Gao DM, Bao WH (2001) Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 7:630–636

    PubMed  CAS  Google Scholar 

  • Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J, Xue Q (2003) Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol 129:43–51. doi:10.1007/s00432-003-0493-z

    PubMed  CAS  Google Scholar 

  • Li Y, Tian B, Yang J, Zhao L, Wu X, Ye SL, Liu YK, Tang ZY (2004) Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 130:460–468. doi:10.1007/s00432-004-0564-9

    PubMed  CAS  Google Scholar 

  • Li B, Gu W, Zhang C, Han KQ, Ling CQ (2006a) Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie 29:367–371. doi:10.1159/000094711

    PubMed  CAS  Google Scholar 

  • Li Y, Tang ZY, Tian B, Ye SL, Qin LX, Xue Q, Sun RX (2006b) Serum CYFRA 21–1 level reflects hepatocellular carcinoma metastasis: study in nude mice model and clinical patients. J Cancer Res Clin Oncol 132:515–520. doi:10.1007/s00432-006-0098-4

    PubMed  CAS  Google Scholar 

  • Lin SB, Wu LC, Huang SL, Hsu HL, Hsieh SH, Chi CW, Au LC (2000) In vitro and in vivo suppression of growth of rat liver epithelial tumor cells by antisense oligonucleotide against protein kinase C-alpha. J Hepatol 33:601–608. doi:10.1034/j.1600-0641.2000.033004601.x

    PubMed  CAS  Google Scholar 

  • Ling CQ, Li B, Zhang C, Zhu DZ, Huang XQ, Gu W, Li SX (2005) Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma. Ann Oncol 16:109–115. doi:10.1093/annonc/mdi019

    PubMed  Google Scholar 

  • Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK, Lozano G (2000) High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 97:4174–4179. doi:10.1073/pnas.97.8.4174

    PubMed  CAS  Google Scholar 

  • Llovet JM, Lok A (2008) Hepatitis B virus genotype and mutants: risk factors for hepatocellular carcinoma. J Natl Cancer Inst 100:1121–1123. doi:10.1093/jnci/djn261

    PubMed  Google Scholar 

  • Lou CY, Feng YM, Qian AR, Li Y, Tang H, Shang P, Chen ZN (2004) Establishment and characterization of human hepatocellular carcinoma cell line FHCC-98. World J Gastroenterol 10:1462–1465

    PubMed  Google Scholar 

  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008) CD133 + HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27:1749–1758. doi:10.1038/sj.onc.1210811

    PubMed  CAS  Google Scholar 

  • MacNab GM, Alexander JJ, Lecatsas G, Bey EM, Urbanowicz JM (1976) Hepatitis B surface antigen produced by a human hepatoma cell line. Br J Cancer 34:509–515

    PubMed  CAS  Google Scholar 

  • Marx J (2003) Medicine. Building better mouse models for studying cancer. Science 299:1972–1975. doi:10.1126/science.299.5615.1972

    PubMed  CAS  Google Scholar 

  • McCoy GW (1909) A preliminary report on tumors found in wild rats. J Med Res 21:285–296

    Google Scholar 

  • McLauchlan J (2000) Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7:2–14. doi:10.1046/j.1365-2893.2000.00201.x

    PubMed  CAS  Google Scholar 

  • Milich DR, Jones JE, Hughes JL, Maruyama T, Price J, Melhado I, Jirik F (1994) Extrathymic expression of the intracellular hepatitis B core antigen results in T cell tolerance in transgenic mice. J Immunol 152:455–466

    PubMed  CAS  Google Scholar 

  • Monjardino J, Crawford E (1979) Polypeptide profile of HBSAg excreted by a human hepatoma cell line. Virology 96:652–655. doi:10.1016/0042-6822(79)90123-5

    PubMed  CAS  Google Scholar 

  • Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1067. doi:10.1038/2053

    PubMed  CAS  Google Scholar 

  • Morris HP, Meranze DR (1974) Induction and some characteristics of “Minimal Deviation” and other transplantable rat hepatomas. Recent Results Cancer Res 44:103–114

    Google Scholar 

  • Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS (1993) Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 53:1719–1723

    PubMed  CAS  Google Scholar 

  • Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424:561–565. doi:10.1038/nature01819

    PubMed  CAS  Google Scholar 

  • Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM (2008) Experimental models of hepatocellular carcinoma. J Hepatol 48:858–879. doi:10.1016/j.jhep.2008.01.008

    PubMed  CAS  Google Scholar 

  • Novicki DL, Jirtle RL, Michalopoulos G (1983) Establishment of two rat hepatoma cell strains produced by a carcinogen initiation, phenobarbital promotion protocol. In Vitro 19:191–202. doi:10.1007/BF02618059

    PubMed  CAS  Google Scholar 

  • Ogawa K, Nakanishi H, Takeshita F, Futakuchi M, Asamoto M, Imaida K, Tatematsu M, Shirai T (2001) Establishment of rat hepatocellular carcinoma cell lines with differing metastatic potential in nude mice. Int J Cancer 91:797–802. doi:10.1002/1097-0215(200002)9999:9999<::AID-IJC1140>3.0.CO;2-#

    PubMed  CAS  Google Scholar 

  • Ohnishi S, Aoyama H, Shiga J, Itai Y, Moriyama T, Ishikawa T, Sasaki N, Yamamoto K, Koshimizu K, Kaneko S (1988) Establishment of a new cell line from a woodchuck hepatocellular carcinoma. Hepatology 8:104–107. doi:10.1002/hep.1840080121

    PubMed  CAS  Google Scholar 

  • Pagano JS, Blaser M, Buendia MA, Damania B, Khalili K, Raab-Traub N, Roizman B (2004) Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 14:453–471. doi:10.1016/j.semcancer.2004.06.009

    PubMed  CAS  Google Scholar 

  • Park JG, Lee JH, Kang MS, Park KJ, Jeon YM, Lee HJ, Kwon HS, Park HS, Yeo KS, Lee KU (1995) Characterization of cell lines established from human hepatocellular carcinoma. Int J Cancer 62:276–282. doi:10.1002/ijc.2910620308

    PubMed  CAS  Google Scholar 

  • Park US, Su JJ, Ban KC, Qin L, Lee EH, Lee YI (2000) Mutations in the p53 tumor suppressor gene in tree shrew hepatocellular carcinoma associated with hepatitis B virus infection and intake of aflatoxin B1. Gene 251:73–80. doi:10.1016/S0378-1119(00)00183-9

    PubMed  CAS  Google Scholar 

  • Pattengale PK, Stewart TA, Leder A, Sinn E, Muller W, Tepler I, Schmidt E, Leder P (1989) Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. Am J Pathol 135:39–61

    PubMed  CAS  Google Scholar 

  • Ray RB, Lagging LM, Meyer K, Ray R (1996a) Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 70:4438–4443

    PubMed  CAS  Google Scholar 

  • Ray RB, Meyer K, Ray R (1996b) Suppression of apoptotic cell death by hepatitis C virus core protein. Virology 226:176–182. doi:10.1006/viro.1996.0644

    PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi:10.1038/35102167

    PubMed  CAS  Google Scholar 

  • Ryall J, Rachubinski RA, Nguyen M, Rozen R, Broglie KE, Shore GC (1984) Regulation and expression of carbamyl phosphate synthetase I mRNA in developing rat liver and Morris hepatoma 5123D. J Biol Chem 259:9172–9176

    PubMed  CAS  Google Scholar 

  • Santoni-Rugiu E, Nagy P, Jensen MR, Factor VM, Thorgeirsson SS (1996) Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha. Am J Pathol 149:407–428

    PubMed  CAS  Google Scholar 

  • Sassier P, Bergeron M (1977) Specific inhibition of cell proliferation in the mouse intestine by an aqueous extract of rabbit small intestine. Cell Tissue Kinet 10:223–231

    PubMed  CAS  Google Scholar 

  • Schock D, Kuo SR, Steinburg MF, Bolognino M, Sparks JD, Sparks CE, Smith HC (1996) An auxiliary factor containing a 240-kDa protein complex is involved in apolipoprotein B RNA editing. Proc Natl Acad Sci USA 93:1097–1102. doi:10.1073/pnas.93.3.1097

    PubMed  CAS  Google Scholar 

  • Sell S (2003) Mouse models to study the interaction of risk factors for human liver cancer. Cancer Res 63:7553–7562

    PubMed  CAS  Google Scholar 

  • Sell S, Leffert HL (2008) Liver cancer stem cells. J Clin Oncol 26:2800–2805. doi:10.1200/JCO.2007.15.5945

    PubMed  Google Scholar 

  • Shuldiner AR (1996) Transgenic animals. N Engl J Med 334:653–655. doi:10.1056/NEJM199603073341009

    PubMed  CAS  Google Scholar 

  • Singh M, Kumar V (2003) Transgenic mouse models of hepatitis B virus-associated hepatocellular carcinoma. Rev Med Virol 13:243–253. doi:10.1002/rmv.392

    PubMed  CAS  Google Scholar 

  • Skelly J, Copeland JA, Howard CR, Zuckerman AJ (1979) Hepatitis B surface antigen produced by a human hepatoma cell line. Nature 282:617–618. doi:10.1038/282617a0

    PubMed  CAS  Google Scholar 

  • Slagle BL, Lee TH, Medina D, Finegold MJ, Butel JS (1996) Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol Carcinog 15:261–269. doi:10.1002/(SICI)1098-2744(199604)15:4<261::AID-MC3>3.0.CO;2-J

    PubMed  CAS  Google Scholar 

  • Sun FX, Tang ZY, Liu KD, Xue Q, Gao DM, Yu YQ, Zhou XD, Ma ZC (1996) Metastatic models of human liver cancer in nude mice orthotopically constructed by using histologically intact patient specimens. J Cancer Res Clin Oncol 122:397–402. doi:10.1007/BF01212878

    PubMed  CAS  Google Scholar 

  • Szabó E, Páska C, Kaposi Novák P, Schaff Z, Kiss A (2004) Similarities and differences in hepatitis B and C virus induced hepatocarcinogenesis. Pathol Oncol Res 10:5–11. doi:10.1007/BF02893401

    PubMed  Google Scholar 

  • Takahashi M, Sato T, Sagawa T, Lu Y, Sato Y, Iyama S, Yamada Y, Fukaura J, Takahashi S, Miyanishi K, Yamashita T, Sasaki K, Kogawa K, Hamada H, Kato J, Niitsu Y (2002) E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 5(5Pt1):627–634

    PubMed  CAS  Google Scholar 

  • Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804. doi:10.2353/ajpath.2007.060929

    PubMed  CAS  Google Scholar 

  • Tamano S, Merlino GT, Ward JM (1994) Rapid development of hepatic tumors in transforming growth factor alpha transgenic mice associated with increased cell proliferation in precancerous hepatocellular lesions initiated by N-nitrosodiethylamine and promoted by phenobarbital. Carcinogenesis 15:1791–1798. doi:10.1093/carcin/15.9.1791

    PubMed  CAS  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T (2008) Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 122:124–131. doi:10.1002/ijc.23056

    PubMed  CAS  Google Scholar 

  • Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, Zhou J, Qiu SJ, Li Y, Ji XN, Liu H, Xia JL, Wu ZQ, Fan J, Ma ZC, Zhou XD, Lin ZY, Liu KD (2004) A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 130:187–196. doi:10.1007/s00432-003-0511-1

    PubMed  Google Scholar 

  • Tatsumi T, Takehara T, Kanto T, Miyagi T, Kuzushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M, Hayashi N (2001) Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res 61:7563–7567

    PubMed  CAS  Google Scholar 

  • Tellinghuisen TL, Rice CM (2002) Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol 5:419–427. doi:10.1016/S1369-5274(02)00341-7

    PubMed  CAS  Google Scholar 

  • Tian J, Tang ZY, Ye SL, Liu YK, Lin ZY, Chen J, Xue Q (1999) New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer 81:814–821. doi:10.1038/sj.bjc.6690769

    PubMed  CAS  Google Scholar 

  • Toshkov I, Chisari FV, Bannasch P (1994) Hepatic preneoplasia in hepatitis B virus transgenic mice. Hepatology 20:1162–1172

    PubMed  CAS  Google Scholar 

  • Turusov VS (1976) Pathology of tumours in laboratory animals. IARC, Lyon, pp 55–57

    Google Scholar 

  • Unoura M, Kobayashi K, Fukuoka K, Matsushita F, Morimoto H, Oshima T, Kaneko S, Hattori N, Murakami S, Yoshikawa H (1985) Establishment of a cell line from a woodchuck hepatocellular carcinoma. Hepatology 5:1106–1111. doi:10.1002/hep.1840050608

    PubMed  CAS  Google Scholar 

  • Wang XW, Yuan JH, Zhang RG, Guo LX, Xie Y, Xie H (2001) Antihepatoma effect of alpha-fetoprotein antisense phosphorothioate oligodeoxyribonucleotides in vitro and in mice. World J Gastroenterol 7:345–351

    PubMed  CAS  Google Scholar 

  • Wang Y, Cui F, Lv Y, Li C, Xu X, Deng C, Wang D, Sun Y, Hu G, Lang Z, Huang C, Yang X (2004) HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology 39:318–324. doi:10.1002/hep.20076

    PubMed  CAS  Google Scholar 

  • Wen JM, Huang JF, Hu L, Wang WS, Zhang M, Sham JS, Xu JM, Zeng WF, Xie D, Liang LJ, Guan XY (2002) Establishment and characterization of human metastatic hepatocellular carcinoma cell line. Cancer Genet Cytogenet 135:91–95. doi:10.1016/S0165-4608(01)00636-7

    PubMed  CAS  Google Scholar 

  • Yamashita YI, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T, Tanaka S, Shirabe K, Miyazaki JI, Sugimachi K (2001) Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 61:1005–1012

    PubMed  CAS  Google Scholar 

  • Yan J, Yu Y, Wang N, Chang Y, Ying H, Liu W, He J, Li S, Jiang W, Li Y, Liu H, Wang H, Xu Y (2004) LFIRE-1/HFREP-1, a liver-specific gene, is frequently downregulated and has growth suppressor activity in hepatocellular carcinoma. Oncogene 23:1939–1949. doi:10.1038/sj.onc.1207306

    PubMed  CAS  Google Scholar 

  • Yoshino H, Futakuchi M, Cho YM, Ogawa K, Takeshita F, Imai N, Tamano S, Shirai T (2005) Modification of an in vivo lung metastasis model of hepatocellular carcinomaby low dose N-nitrosomorpholine and diethylnitrosamine. Clin Exp Metastasis 22:441–447. doi:10.1007/s10585-005-2807-9

    PubMed  CAS  Google Scholar 

  • Yu DY, Moon HB, Son JK, Jeong S, Yu SL, Yoon H, Han YM, Lee CS, Park JS, Lee CH, Hyun BH, Murakami S, Lee KK (1999) Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 31:123–132. doi:10.1016/S0168-8278(99)80172-X

    PubMed  CAS  Google Scholar 

  • Zannis VI, Breslow JL, SanGiacomo TR, Aden DP, Knowles BB (1981) Characterization of the major apolipoproteins secreted by two human hepatoma cell lines. Biochemistry 20:7089–7096. doi:10.1021/bi00528a006

    PubMed  CAS  Google Scholar 

  • Zheng Y, Chen WL, Louie SG, Yen TS, Ou JH (2007) Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 45:16–21. doi:10.1002/hep.21445

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the grants from the New-Century Excellent Talents Supporting Program of the Ministry of Education of China (No. NCET-04-0669), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200464), the Natural Science Foundation of China (No. 20675058), the Science Fund for Creative Research Groups (No. 20621502), NSFC and Sate Key Scientific Research Project (2008ZX10002-021).

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Tang, ZY. & Li, Y. Experimental models of hepatocellular carcinoma: developments and evolution. J Cancer Res Clin Oncol 135, 969–981 (2009). https://doi.org/10.1007/s00432-009-0591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0591-7

Keywords

Navigation