DNA vaccination with a mutated p53 allele induces specific cytolytic T cells and protects against tumor cell growth and the formation of metastasis

  • Matjaz HumarEmail author
  • Martina Maurer
  • Marc Azemar
  • Bernd Groner
Original Paper



Genetic vaccination by expression plasmids that encode mutant p53 was conducted to characterize exogenously induced anti-tumoral immunity in mice.


Gene transfer was evaluated by reporter gene expression assays. The efficacy of genetic immunization was addressed by analysis of solid tumor outgrowth and the formation of metastases. Cell mediated immunity was determined by 51Cr-release cytotoxicity assays and adoptive lymphocyte transfer experiments.


Genetic vaccination resulted in a persistent protection against the growth and metastasis of transplanted tumor cells. Immunoprotection was based on the induction of cytolytic T cells (CTLs) able to recognize mutant but not wild type p53. Mice were not protected from tumor cell growth when the tumor cells expressed alternate p53 mutations or overexpressed wild type p53. No p53 specific humoral immune response was detected. T-lymphocyte transfer experiments demonstrated that resistance to tumor growth depended both on tumor size and a time-dependent induction of protective immunity. Small tumors (Ø < 0.4 cm3) went into remission or remained stable upon adoptive transfer of T-lymphocytes from mice immunized with mutant p53 DNA; larger tumors progressed. A time course of immunization was evaluated and showed that DNA vaccination must precede tumor cell inoculation in order to induce an efficient anti-tumoral response.


DNA vaccination against the mutated form of p53 can elicit a specific adaptive immune response and has anti-tumoral activity. Tumor burden and the time necessary to acquire tumor immunity were recognized as critical parameters for immunization; however, tumors may evade specific immunotherapy.


Tumor suppressor protein p53 Vaccination Neoplasm metastasis Immune system 



This work was supported by the Deutsche Krebshilfe e.V./Dr. Mildred Scheel Stiftung für Krebsforschung, Bonn (W3/93/Gr1), and departmental funding from the Tumor Biology Center, Germany.


  1. Andersen MH, Bonfill JE, Neisig A, Arsequell G, Sondergaard I, Valencia G, Neefjes J, Zeuthen J, Elliott T, Haurum JS (1999) Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J Immunol 163:3812–3818PubMedGoogle Scholar
  2. Angelopoulou K, Stratis M, Diamandis EP (1997) Humoral immune response against p53 protein in patients with colorectal carcinoma. Int J Cancer 70:46–51PubMedCrossRefGoogle Scholar
  3. Bergstresser PR, Fletcher CR, Streilein JW (1980) Surface densities of Langerhans cells in relation to rodent epidermal sites with special immunologic properties. J Invest Dermatol 74:77–80PubMedCrossRefGoogle Scholar
  4. Bertholet S, Iggo R, Corradin G (1997) Cytotoxic T lymphocyte responses to wild-type and mutant mouse p53 peptides. Eur J Immunol 27:798–801PubMedCrossRefGoogle Scholar
  5. Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S, Kavanaugh D, Maher VE, Stipanov M, Contois D, Johnson BE, Pendleton CD, Seifert B, Carter C, Read EJ, Greenblatt J, Top LE, Kelsey MI, Minna JD, Berzofsky JA (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23:5099–5107PubMedCrossRefGoogle Scholar
  6. Chang F, Syrjanen S, Tervahauta A, Syrjanen K (1993) Tumourigenesis associated with the p53 tumour suppressor gene. Br J Cancer 68:653–661PubMedGoogle Scholar
  7. Ciernik IF, Berzofsky JA, Carbone DP (1996) Human lung cancer cells endogenously expressing mutant p53 process and present the mutant epitope and are lysed by mutant-specific cytotoxic T lymphocytes. Clin Cancer Res 2:877–882PubMedGoogle Scholar
  8. Cohen AD, Boyer JD, Weiner DB (1998) Modulating the immune response to genetic immunization. FASEB J 12:1611–1626PubMedGoogle Scholar
  9. Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436PubMedGoogle Scholar
  10. Deck RR, DeWitt CM, Donnelly JJ, Liu MA, Ulmer JB (1997) Characterization of humoral immune responses induced by an influenza hemagglutinin DNA vaccine. Vaccine 15:71–78PubMedCrossRefGoogle Scholar
  11. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617–648PubMedCrossRefGoogle Scholar
  12. El Hage F, Vergnon I, Grunenwald D, Soria JC, Chouaib S, Mami-Chouaib F (2005) Generation of diverse mutated tumor antigen-specific cytotoxic T lymphocytes in a lung cancer patient with long survival. Oncol Rep 14:763–769PubMedGoogle Scholar
  13. Eliyahu D, Goldfinger N, Pinhasi-Kimhi O, Shaulsky G, Skurnik Y, Arai N, Rotter V, Oren M (1988) Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313–321PubMedGoogle Scholar
  14. Fujiwara T, Kataoka M, Kawamata O, Tanaka N (1999) A phase I trial of adenoviral p53 gene therapy for non-small cell lung cancer. Nippon Geka Gakkai Zasshi 100:749–755PubMedGoogle Scholar
  15. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  16. Gottschlich S, Folz BJ, Goeroegh T, Lippert BM, Maass JD, Werner JA (1999) A new prognostic indicator for head and neck cancer–p53 serum antibodies? Anticancer Res 19:2703–2705PubMedGoogle Scholar
  17. Gross G, Margalit A (2007) Targeting tumor-associated antigens to the MHC class I presentation pathway. Endocr Metab Immune Disord Drug Targets 7:99–109PubMedCrossRefGoogle Scholar
  18. Ichiki Y, Takenoyama M, Mizukami M, So T, Sugaya M, Yasuda M, So T, Hanagiri T, Sugio K, Yasumoto K (2004) Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol 172:4844–4850PubMedGoogle Scholar
  19. Kawakami Y, Fujita T, Kudo C, Sakurai T, Udagawa M, Yaguchi T, Hasegawa G, Hayashi E, Ueda Y, Iwata T, Wang Q, Okada S, Tsukamoto N, Matsuzaki Y, Sumimoto H (2008) Dendritic cell based personalized immunotherapy based on cancer antigen research. Front Biosci 13:1952–1958PubMedCrossRefGoogle Scholar
  20. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14PubMedCrossRefGoogle Scholar
  21. Kyte JA, Gaudernack G (2006) Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother 55:1432–1442PubMedCrossRefGoogle Scholar
  22. Leen AM, Rooney CM, Foster AE (2007) Improving T cell therapy for cancer. Annu Rev Immunol 25:243–265PubMedCrossRefGoogle Scholar
  23. Liu C, Gao S, Qu Z, Zhang L (2007) Tumor microenvironment: hypoxia and buffer capacity for immunotherapy. Med Hypotheses 69:590–595PubMedCrossRefGoogle Scholar
  24. Lutz MB, Granucci F, Winzler C, Marconi G, Paglia P, Foti M, Assmann CU, Cairns L, Rescigno M, Ricciardi-Castagnoli P (1994) Retroviral immortalization of phagocytic and dendritic cell clones as a tool to investigate functional heterogeneity. J Immunol Methods 174:269–279PubMedCrossRefGoogle Scholar
  25. McCluskie MJ, Krieg AM (2006) Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol 311:155–178PubMedCrossRefGoogle Scholar
  26. McKee MD, Fichera A, Nishimura MI (2007) T cell immunotherapy. Front Biosci 12:919–932PubMedCrossRefGoogle Scholar
  27. Merlo GR, Venesio T, Taverna D, Marte BM, Callahan R, Hynes NE (1994) Growth suppression of normal mammary epithelial cells by wild-type p53. Oncogene 9:443–453PubMedGoogle Scholar
  28. Mitsudomi T, Suzuki S, Yatabe Y, Nishio M, Kuwabara M, Gotoh K, Hatooka S, Shinoda M, Suyama M, Ogawa M, Takahashi T, Ariyoshi Y, Takahashi T (1998) Clinical implications of p53 autoantibodies in the sera of patients with non-small-cell lung cancer. J Natl Cancer Inst 90:1563–1568PubMedCrossRefGoogle Scholar
  29. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587–3596PubMedCrossRefGoogle Scholar
  30. Nagata T, Aoshi T, Uchijima M, Suzuki M, Koide Y (2004) Cytotoxic T-lymphocyte-, and helper T-lymphocyte-oriented DNA vaccination. DNA Cell Biol 23:93–106PubMedCrossRefGoogle Scholar
  31. Noguchi Y, Chen YT, Old LJ (1994) A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA 91:3171–3175PubMedCrossRefGoogle Scholar
  32. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedCrossRefGoogle Scholar
  33. Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, Platzer P, Eng C (2007) Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 357:2543–2551PubMedCrossRefGoogle Scholar
  34. Pelleitier M, Montplaisir S (1975) The nude mouse: a model of deficient T-cell function. Methods Achiev Exp Pathol 7:149–166PubMedGoogle Scholar
  35. Peng S, Trimble C, He L, Tsai YC, Lin CT, Boyd DA, Pardoll D, Hung CF, Wu TC (2006) Characterization of HLA-A2-restricted HPV-16 E7-specific CD8(+) T-cell immune responses induced by DNA vaccines in HLA-A2 transgenic mice. Gene Ther 13:67–77PubMedCrossRefGoogle Scholar
  36. Periti P, Mini E (1987) Immunomodulation by cancer chemotherapeutic agents. Chemioterapia 6:399–402PubMedGoogle Scholar
  37. Pietsch EC, Humbey O, Murphy ME (2006) Polymorphisms in the p53 pathway. Oncogene 25:1602–1611PubMedCrossRefGoogle Scholar
  38. Rammensee HG, Falk K, Rotzschke O (1993) Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11:213–244PubMedCrossRefGoogle Scholar
  39. Reiman JM, Kmieciak M, Manjili MH, Knutson KL (2007) Tumor immunoediting and immunosculpting pathways to cancer progression. Semin Cancer Biol 17:275–287PubMedCrossRefGoogle Scholar
  40. Rosenfeld MR, Malats N, Schramm L, Graus F, Cardenal F, Vinolas N, Rosell R, Tora M, Real FX, Posner JB, Dalmau J (1997) Serum anti-p53 antibodies and prognosis of patients with small-cell lung cancer. J Natl Cancer Inst 89:381–385PubMedCrossRefGoogle Scholar
  41. Sang H, Pisarev VM, Chavez J, Robinson S, Guo Y, Hatcher L, Munger C, Talmadge CB, Solheim JC, Singh RK, Talmadge JE (2005) Murine mammary adenocarcinoma cells transfected with p53 and/or Flt3L induce antitumor immune responses. Cancer Gene Ther 12:427–437PubMedCrossRefGoogle Scholar
  42. Sasaki S, Takeshita F, Xin KQ, Ishii N, Okuda K (2003) Adjuvant formulations and delivery systems for DNA vaccines. Methods 31:243–254PubMedCrossRefGoogle Scholar
  43. Schirle M (2002) Identification of tumor-associated HLA-ligands in the post-genomic era. J Hematother Stem Cell Res 11:873–881PubMedCrossRefGoogle Scholar
  44. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274PubMedCrossRefGoogle Scholar
  45. Slingerland JM, Jenkins JR, Benchimol S (1993) The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO J 12:1029–1037PubMedGoogle Scholar
  46. Snyder JT, Alexander-Miller MA, Berzofskyl JA, Belyakov IM (2003) Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 1:287–294PubMedCrossRefGoogle Scholar
  47. Soddu S, Sacchi A (1998) p53: prospects for gene therapy of cancer. Clin Ter 149:289–295PubMedGoogle Scholar
  48. Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12:303–312PubMedCrossRefGoogle Scholar
  49. Soussi T, Ishioka C, Claustres M, Beroud C (2006) Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6:83–90PubMedCrossRefGoogle Scholar
  50. Takanami I, Takeuchi K, Giga M (2001) The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J Thorac Cardiovasc Surg 121:1058–1063PubMedCrossRefGoogle Scholar
  51. Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–1749PubMedCrossRefGoogle Scholar
  52. Van den EB, Lethe B, Van Pel A, De Plaen E, Boon T (1991) The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med 173:1373–1384CrossRefGoogle Scholar
  53. Vassilev LT (2007) MDM2 inhibitors for cancer therapy. Trends Mol Med 13:23–31PubMedCrossRefGoogle Scholar
  54. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665PubMedCrossRefGoogle Scholar
  55. Verdegaal EM, Hoogstraten C, Sandel MH, Kuppen PJ, Brink AA, Claas FH, Gorsira MC, Graadt van Roggen JF, Osanto S (2007) Functional CD8+ T cells infiltrate into nonsmall cell lung carcinoma. Cancer Immunol Immunother 56:587–600PubMedCrossRefGoogle Scholar
  56. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310PubMedCrossRefGoogle Scholar
  57. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283PubMedCrossRefGoogle Scholar
  58. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13:921–926PubMedCrossRefGoogle Scholar
  59. Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 87:9568–9572PubMedCrossRefGoogle Scholar
  60. Yanuck M, Carbone DP, Pendleton CD, Tsukui T, Winter SF, Minna JD, Berzofsky JA (1993) A mutant p53 tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T-cells. Cancer Res 53:3257–3261PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Matjaz Humar
    • 1
    Email author
  • Martina Maurer
    • 2
  • Marc Azemar
    • 3
  • Bernd Groner
    • 4
  1. 1.Center for Clinical ResearchUniversity Hospital FreiburgFreiburgGermany
  2. 2.Basilea Pharmaceutica International Ltd.BaselSwitzerland
  3. 3.Tumor Biology CenterInternistische OnkologieFreiburgGermany
  4. 4.Institute for Biomedical ResearchGeorg Speyer HausFrankfurt am MainGermany

Personalised recommendations