Skip to main content

Advertisement

Log in

Lysophosphatidic acid signaling through LPA receptor subtype 1 induces colony scattering of gastrointestinal cancer cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Lysophosphatidic acid (LPA) is a multifunctional lipid mediator involved in triggering tumor cell invasion and metastasis, as well as malignant cell growth. LPA is also known to modulate the colony scattering of epithelial cancers, which is a prerequisite for cell invasion. However, the underlying details of how this is accomplished are not clear. Here we have investigated the roles of specific LPA receptor subtypes in cell scattering.

Methods

Gastrointestinal carcinoma cell lines were examined for cell scattering activity in response to LPA, and the expression of LPA receptor subtypes was determined by RT-PCR. The effect of down regulation of each LPA receptor in DLD1 cells was determined using a shRNA-lentivirus system. In addition, the effect of overexpression of LPA receptors on cell scattering was investigated using lentivirus expression constructs.

Results

The colonies of AGS and DLD1, but not MKN74, cells were dispersed in response to LPA. RT-PCR analysis revealed that the mRNAs of LPA1, LPA2, and LPA3 were present in AGS and DLD1 cells, but only LPA2 mRNA was detected in MKN74 cells. In DLD1 cells, the scattering activity induced by LPA was partially blocked by pretreatment with PP2 and PD98059, inhibitors of src kinase and MEK, respectively. LPA1 knockdown with shRNA decreased the degree of cell scattering induced by LPA. Knockdown of LPA2 or LPA3 had no effect on LPA-induced scattering. In addition, overexpression of LPA1 in DLD1 cells slightly decreased the response time of LPA-induced cell scattering. On the contrary, MKN74 cells expressing exogenous LPA1 did not respond to LPA by scattering.

Conclusion

These results demonstrate that LPA1 mediates LPA-stimulated cell scattering of gastrointestinal carcinomas, but that activation of other intracellular pathways, besides those contributing to ERK phosphorylation, is also necessary for cell scattering in response to LPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LPA:

Lysophosphatidic acid

RT-PCR:

Reverse transcription-polymerase chain reaction

shRNA:

Short hairpin ribonucleic acid

References

  • Anliker B, Chun J (2004) Lysophospholipid G protein-coupled receptors. J Biol Chem 279:20555–20558

    Article  PubMed  CAS  Google Scholar 

  • Daaka Y (2002) Mitogenic action of LPA in prostate. Biochim Biophys Acta 1582:265–269

    PubMed  CAS  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  • Goetzl EJ, An S (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J 12:1589–1598

    PubMed  CAS  Google Scholar 

  • Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R, Ohta H, Yamori T, Watanabe M, Chun J, Arai H (2004) Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J Biol Chem 279:17634–17639

    Article  PubMed  CAS  Google Scholar 

  • Hao F, Tan M, Xu X, Han J, Miller DD, Tigyi G, Cui MZ (2007) Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA(1), p42 and p38alpha. Biochim Biophys Acta 1771:883–892

    PubMed  CAS  Google Scholar 

  • Huang RY, Wang SM, Hsieh CY, Wu JC (2008) Lysophosphatidic acid induces ovarian cancer cell dispersal by activating Fyn kinase associated with p120-catenin. Int J Cancer (in press)

  • Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558

    Article  PubMed  CAS  Google Scholar 

  • Hwang JI, Fraser ID, Choi S, Qin XF, Simon MI (2004) Analysis of C5a-mediated chemotaxis by lentiviral delivery of small interfering RNA. Proc Natl Acad Sci USA 101:488–493

    Article  PubMed  CAS  Google Scholar 

  • Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354

    Article  PubMed  CAS  Google Scholar 

  • Jourquin J, Yang N, Kam Y, Guess C, Quaranta V (2006) Dispersal of epithelial cancer cell colonies by lysophosphatidic acid (LPA). J Cell Physiol 206:337–346

    Article  PubMed  CAS  Google Scholar 

  • Khurana S, Tomar A, George SP, Wang Y, Siddiqui MR, Guo H, Tigyi G, Mathew S (2008) Autotaxin and lysophosphatidic acid stimulate intestinal cell motility by redistribution of the actin modifying protein villin to the developing lamellipodia. Exp Cell Res 314:530–542

    Article  PubMed  CAS  Google Scholar 

  • Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene 24:7443–7454

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597

    Article  PubMed  CAS  Google Scholar 

  • Long IS, Han K, Li M, Shirasawa S, Sasazuki T, Johnston M, Tsao MS (2003) Met receptor overexpression and oncogenic Ki-ras mutation cooperate to enhance tumorigenicity of colon cancer cells in vivo. Mol Cancer Res 1:393–401

    PubMed  CAS  Google Scholar 

  • Mills GB, Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3:582–591

    Article  PubMed  CAS  Google Scholar 

  • Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A (1990) Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest 86:851–855

    Article  PubMed  CAS  Google Scholar 

  • Moolenaar WH (1995) Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270:12949–12952

    PubMed  CAS  Google Scholar 

  • Shah BH, Baukal AJ, Shah FB, Catt KJ (2005) Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol Endocrinol 19:2535–2548

    Article  PubMed  CAS  Google Scholar 

  • Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takuwa Y, Nagawa H (2003) Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res 63:1706–1711

    PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  • Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277:39436–39442

    Article  PubMed  CAS  Google Scholar 

  • Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Gibbs TC, Mukhin YV, Meier KE (2002) Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J Biol Chem 277:32516–32526

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G (1998) Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Jama 280:719–723

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S (2005) G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β-catenin pathway. Proc Natl Acad Sci USA 102:6027–6032

    Article  PubMed  CAS  Google Scholar 

  • Yee JK, Friedmann T, Burns JC (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 43(Pt A):99–112

    Article  PubMed  CAS  Google Scholar 

  • Yun CC, Sun H, Wang D, Rusovici R, Castleberry A, Hall RA, Shim H (2005) LPA2 receptor mediates mitogenic signals in human colon cancer cells. Am J Physiol Cell Physiol 289:C2–C11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD)(KRF- 2007-331-C00232) and by the Korea University Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Ik Hwang.

Additional information

Y. L. Kim and K.-J. Shin equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, KJ., Kim, Y.L., Lee, S. et al. Lysophosphatidic acid signaling through LPA receptor subtype 1 induces colony scattering of gastrointestinal cancer cells. J Cancer Res Clin Oncol 135, 45–52 (2009). https://doi.org/10.1007/s00432-008-0441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-008-0441-z

Keywords

Navigation