Skip to main content

Advertisement

Log in

Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Multidrug resistance (MDR) has been linked to sphingolipid metabolism and preclinical data ascribe glucosylceramide synthase (GCS) a major role for MDR especially in breast cancer cells but no profound data are available on the expression of this potential therapeutic target in clinical breast cancer specimens.

Methods

We analyzed microarray data of GCS expression in a large cohort of 1,681 breast tumors.

Results

Expression of GCS was associated with a positive estrogen receptor (ER) status, lower histological grading, low Ki67 levels and ErbB2 negativity (P < 0.001 for all). In univariate analysis there was a benefit for disease free survival for patients with tumors displaying low levels of GCS expression but this significance was lost in multivariate Cox regression.

Conclusions

Our results suggest ER positive tumors may be the most promising candidates for a potential therapeutic application of GCS inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahr A, Karn T, Solbach C, Seiter T, Strebhardt K, Holtrich U et al (2002) Identification of high risk breast-cancer patients by gene expression profiling. Lancet 359(9301):131–132. doi:10.1016/S0140-6736(02)07337-3

    Article  PubMed  Google Scholar 

  • Alexe G, Dalgin GS, Scanfeld D, Tamayo P, Mesirov JP, DeLisi C et al (2007) High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res 67(22):10669–10676. doi:10.1158/0008-5472.CAN-07-0539

    Article  PubMed  CAS  Google Scholar 

  • Bembi B, Marchetti F, Guerci VI, Ciana G, Addobbati R, Grasso D et al (2006) Substrate reduction therapy in the infantile form of Tay-Sachs disease. Neurology 66(2):278–280. doi:10.1212/01.wnl.0000194225.78917.de

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01 clinical trial. Lancet Oncol 8(12):1071–1078. doi:10.1016/S1470-2045(07)70345-5

    Article  PubMed  CAS  Google Scholar 

  • Butters TD (2007) Pharmacotherapeutic strategies using small molecules for the treatment of glycolipid lysosomal storage disorders. Expert Opin Pharmacother 8(4):427–435. doi:10.1517/14656566.8.4.427

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary PM, Roninson IB (1993) Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 85:632–639. doi:10.1093/jnci/85.8.632

    Article  PubMed  CAS  Google Scholar 

  • de Azambuja E, Cardoso F, de Castro G Jr, Colozza M, Mano MS, Durbecq V et al (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 96(10):1504–1513. doi:10.1038/sj.bjc.6603756

    Google Scholar 

  • Deffie AM, Batra JK, Goldenberg GJ (1989) Direct correlation between DNA topoisomerase II activity and ytotoxicity in Adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res 49:58–62

    PubMed  CAS  Google Scholar 

  • Deng W, Li R, Guerrera M, Liu Y, Ladisch S (2002) Transfection of glucosylceramide synthase antisense inhibits mouse melanoma formation. Glycobiology 12:145–152. doi:10.1093/glycob/12.3.145

    Article  PubMed  CAS  Google Scholar 

  • Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, et al. (2007) TRANSBIG Consortium. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214. doi:10.1158/1078-0432.CCR-06-2765

  • Di Sano F, Di Bartolomeo S, Fiorentini C, Matarrese P, Spinedi A, Piacentini M (2002) Antisense to glucosylceramide synthase in human neuroepithelioma affects cell growth but not apoptosis. Cell Death Differ 9:693–695. doi:10.1038/sj.cdd.4401040

    Article  PubMed  CAS  Google Scholar 

  • Foekens JA, Atkins D, Zhang Y, Sweep FC, Harbeck N, Paradiso A et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24(11):1665–1671. doi:10.1200/JCO.2005.03.9115

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz A (2006) Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim Biophys Acta 1758:2049–2056

    Google Scholar 

  • Gong Y, Yan K, Lin F, Anderson K, Sotiriou C, Andre F et al (2007) Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 8(3):203–211. doi:10.1016/S1470-2045(07)70042-6

    Article  PubMed  CAS  Google Scholar 

  • Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H et al (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3:633–639

    PubMed  CAS  Google Scholar 

  • Gouaze-Andersson V, Cabot MC (2006) Glycosphingolipids and drug resistance. Biochim Biophys Acta 1758:2096–2103

    Article  PubMed  CAS  Google Scholar 

  • Gouaze-Andersson V, Yu JY, Kreitenberg AJ, Bielawska A, Giuliano AE, Cabot MC (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 1771:1407–1417

    PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150. doi:10.1038/nrm2329

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31(4):e15. doi:10.1093/nar/gng015

  • Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267. doi:10.1083/jcb.117.2.259

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar M, Butters TD, Dwek RA, Platt FM (2002) Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28(5):343–357. doi:10.1046/j.1365-2990.2002.00422.x

    Article  PubMed  CAS  Google Scholar 

  • Kohno K, Sato S, Takano H, Matsuo K, Kuwano M (1989) The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun 165:1415–1421. doi:10.1016/0006-291X(89)92761-7

    Article  PubMed  CAS  Google Scholar 

  • Kok JW, Veldman RJ, Klappe K, Koning H, Filipeanu CM, Muller M (2000) Differential expression of sphingolipids in MRP1 overexpressing HT29 cells. Int J Cancer 87:172–178. doi:10.1002/1097-0215(20000715)87:2<172::AID-IJC3>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  • Lachmann RH (2003) Miglustat Oxford glycoSciences/actelion. Curr Opin Investig Drugs 4:472–479

    PubMed  CAS  Google Scholar 

  • Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–19536. doi:10.1074/jbc.271.32.19530

    Article  PubMed  CAS  Google Scholar 

  • Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V et al (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272:1682–1687. doi:10.1074/jbc.272.3.1682

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98(1):31–36. doi:10.1073/pnas.011404098

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Han TY, Giuliano AE, Cabot MC (1999a) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146. doi:10.1074/jbc.274.2.1140

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Han TY, Giuliano AE, Ichikawa S, Hirabayashi Y, Cabot MC (1999b) Glycosylation of ceramide potentiates cellular resistance to tumor necrosis factor-alpha-induced apoptosis. Exp Cell Res 252:464–470. doi:10.1006/excr.1999.4649

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Han TY, Giuliano AE, Hansen N, Cabot MC (2000) Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance. J Biol Chem 275:7138–7143. doi:10.1074/jbc.275.10.7138

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-Y, Han TY, Yu JY, Bitterman A, Le A, Giuliano AE et al (2004) Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 45:933–940. doi:10.1194/jlr.M300486-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Liu YY,, Yin D,, Gupta V, Hirabayashi Y, Holleran WM, Giuliano AE, Jazwinski SM, Gouaze-Andersson V, Consoli DP, Cabot MC. (2008) A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J [Epub ahead of print]

  • Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25(10):1239–1246. doi:10.1200/JCO.2006.07.1522

    Article  PubMed  CAS  Google Scholar 

  • Lucci A, Cho WI, Han TY, Giuliano AE, Morton DL, Cabot MC (1998) Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res 18:475–480

    PubMed  CAS  Google Scholar 

  • Makin G, Dive C (2001) Apoptosis and cancer chemotherapy. Trends Cell Biol 11:S22–S26

    PubMed  CAS  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102(38):13550–13555. doi:10.1073/pnas.0506230102

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524. doi:10.1038/nature03799

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D et al (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104(16):6740–6745. doi:10.1073/pnas.0701138104

    Article  PubMed  CAS  Google Scholar 

  • Morjani H, Aouali N, Belhoussine R, Veldman RJ, Levade T, Manfait M (2001) Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 94:157–165. doi:10.1002/ijc.1449

    Article  PubMed  CAS  Google Scholar 

  • Morrow CS, Cowan KH (1990) Glutathione S-transferases and drug resistance. Cancer Cells 2:15–22

    PubMed  CAS  Google Scholar 

  • Mueller H, Eppenberger U (1996) The dual role of mutant p53 protein in chemosensitivity of human cancers. Anticancer Res 16:3845–3848

    PubMed  CAS  Google Scholar 

  • Nicholson KM, Quinn DM, Kellett GL, Warr JR (1999) Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase. Br J Cancer 81:423–430. doi:10.1038/sj.bjc.6690711

    Article  PubMed  CAS  Google Scholar 

  • Norris-Cervetto E, Callaghan R, Platt FM, Dwek RA, Butters TD (2004) Inhibition of glucosylceramide synthase does not reverse drug resistance in cancer cells. J Biol Chem 279:40412–40418. doi:10.1074/jbc.M404466200

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616. doi:10.1038/nrc1411

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen B, Schady D, Usta J, Wood R, Kraveka JM, Luberto C et al (2001) Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J Biol Chem 276:24901–24910. doi:10.1074/jbc.M100314200

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6(9):765–772. doi:10.1016/S1474-4422(07)70194-1

    Article  PubMed  CAS  Google Scholar 

  • Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7(6):R953–R964. doi:10.1186/bcr1325

    Article  PubMed  CAS  Google Scholar 

  • Radin NS, Shayman JA, Inokuchi J-I (1993) Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv Lipid Res 26:183–211

    PubMed  CAS  Google Scholar 

  • Reed JC (1995) Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7:541–546. doi:10.1097/00001622-199511000-00012

    Article  PubMed  CAS  Google Scholar 

  • Reynolds CP, Maurer BJ, Kolesnick RN (2004) Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett 206:169–180. doi:10.1016/j.canlet.2003.08.034

    Article  PubMed  CAS  Google Scholar 

  • Rody A, Holtrich U, Muller V, Gaetje R, Diallo R, Gehrmann M et al (2006) c-kit: identification of co-regulated genes by gene expression profiling and clinical relevance of two breast cancer subtypes with stem cell like features. ASCO annual meeting proceedings part I. J Clin Oncol 24:622

    Google Scholar 

  • Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von Minckwitz G et al (2007) Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin Cancer Res 13(4):1115–1122. doi:10.1158/1078-0432.CCR-06-2433

    Article  PubMed  CAS  Google Scholar 

  • Ruckhäberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grösch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2007) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat [Epub ahead of print]

  • Shabbits JA, Mayer LD (2002) P-glycoprotein modulates ceramide-mediated sensitivity of human breast cancer cells to tubulin-binding anticancer drugs. Mol Cancer Ther 1:205–213

    PubMed  CAS  Google Scholar 

  • Shabbits JA, Krishna R, Mayer LD (2001) Molecular and pharmacological strategies to overcome multidrug resistance. Expert Rev Anticancer Ther 1:585–594. doi:10.1586/14737140.1.4.585

    Article  PubMed  CAS  Google Scholar 

  • Simstein R, Burow M, Parker A, Weldon C, Beckman B (2003) Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood) 228:995–1003

    CAS  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Article  PubMed  CAS  Google Scholar 

  • Spyratos F, Ferrero-Poüs M, Trassard M, Hacène K, Phillips E, Tubiana-Hulin M et al (2002) Correlation between MIB-1 and other proliferation markers: clinical implications of the MIB-1 cutoff value. Cancer 94(8):2151–2159. doi:10.1002/cncr.10458

    Article  PubMed  CAS  Google Scholar 

  • Tifft CJ, Proia RJ (2000) Stemming the tide: glycosphingolipids synthesis inhibitors as therapy for storage diseases. Glycobiology 10:1249–1258. doi:10.1093/glycob/10.12.1249

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    PubMed  CAS  Google Scholar 

  • Weiss M, Hettmer S, Smith P, Ladisch S (2003) Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase. Cancer Res 63(13):3654–3658

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Samira Adel and Katherina Kourtis for expert technical assistance. This work was supported by grants from the Deutsche Krebshilfe, the Margarete Bonifer-Stiftung, Bad Soden, the Dr. Robert Pfleger-Stiftung, Bamberg, and the BANSS-Stiftung, Biedenkopf.

Conflicts of interest statement

There are no conflicts of interest to declare.

Role of the funding source

The funding sources were not involved in the study design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Ethical approval

Ethical approval was not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Karn.

Additional information

Eugen Ruckhäberle and Thomas Karn contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruckhäberle, E., Karn, T., Hanker, L. et al. Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer. J Cancer Res Clin Oncol 135, 81–90 (2009). https://doi.org/10.1007/s00432-008-0436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-008-0436-9

Keywords

Navigation