Skip to main content

Advertisement

Log in

SCC-112 gene is involved in tumor progression and promotes the cell proliferation in G2/M phase

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

SCC-112 is a novel cell cycle-related gene and differentially expressed in cancers. Suggesting the complex role of SCC-112 might be existent in cell proliferation and tumor development. The relative research on SCC-112 has been few so far. This study is attempted to explore the role of SCC-112 in tumorigenesis.

Experimental design

RT-PCR and western blot were performed on seven tumor-normal paired tissues and nine cell lines. Immunohistochemistry was carried out for analyzing the expression of SCC-112 in nasopharyngeal tissues. 293T and three nasopharyngeal cell lines were transfected with expression vector (pCMV-SPORT6-SCC-112) or its siRNA. Cell proliferation was examined by MTT and clone formation experiments. Immunoprecipitation determined the interacted protein of SCC-112, and FACS detected cell cycle parameter on cells treated with synchronized reagent.

Results

SCC-112 (∼150 kDa) is up-regulated in tumor tissue as compared to the corresponding normal tissue and was detected in the tested cell lines. Overexpression of SCC-112 (∼150 kDa) in 293T and three nasopharyngeal cell lines promoted cell proliferation and clone formation while downregulation of SCC-112 (∼150 kDa) in these cells resulted in the opposite. Moreover, SCC-112 was found to interact with p63 and overexpression of SCC-112 up-regulated p63 expression. SCC-112 expression level positively correlated with cells in G2/M phase.

Conclusions

These findings suggest that SCC-112 improve cell proliferation and contributes to tumorigenesis by interacting with p63 and promoting cell cycling. SCC-112 might be an alternative target in tumor biomarking and mechanistic investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bakal CJ, Finan D, LaRose J, Wells CD, Gish G, Kulkarni S, DeSepulveda P, Wilde A, Rottapel R (2005) The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proc Natl Acad Sci USA 102:9529–9534

    Article  PubMed  CAS  Google Scholar 

  • Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M (2000) Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. Embo J 19:2056–2068

    Article  PubMed  CAS  Google Scholar 

  • Bar-Sagi D, Hall A (2000) Ras and Rho GTPases: a family reunion. Cell 103:227–238

    Article  PubMed  CAS  Google Scholar 

  • Bar J, Lukaschuk N, Zalcenstein A, Wilder S, Seger R, Oren M (2005) The PI3K inhibitor LY294002 prevents p53 induction by DNA damage and attenuates chemotherapy-induced apoptosis. Cell Death Differ 12:1578–1587

    Article  PubMed  CAS  Google Scholar 

  • Barbieri CE, Barton CE, Pietenpol JA (2003) Delta Np63 alpha expression is regulated by the phosphoinositide 3-kinase pathway. J Biol Chem 278:51408–51414

    Article  PubMed  CAS  Google Scholar 

  • Baroffio A, Dupin E, Le Douarin NM (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci USA 85:5325–5329

    Article  PubMed  CAS  Google Scholar 

  • Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705:121–132

    PubMed  CAS  Google Scholar 

  • Coleman ML, Marshall CJ, Olson MF (2004) RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5:355–366

    Article  PubMed  CAS  Google Scholar 

  • Crook T, Nicholls JM, Brooks L, O’Nions J, Allday MJ (2000) High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 19:3439–3444

    Article  PubMed  CAS  Google Scholar 

  • Davis LD, Zhang W, Merseburger A, Young D, Xu L, Rhim JS, Moul JW, Srivastava S, Sesterhenn IA (2002) p63 expression profile in normal and malignant prostate epithelial cells. Anticancer Res 22:3819–3825

    PubMed  CAS  Google Scholar 

  • Di Como CJ, Urist MJ, Babayan I, Drobnjak M, Hedvat CV, Teruya-Feldstein J, Pohar K, Hoos A, Cordon-Cardo C (2002) p63 expression profiles in human normal and tumor tissues. Clin Cancer Res 8:494–501

    PubMed  CAS  Google Scholar 

  • Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

  • Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  PubMed  CAS  Google Scholar 

  • Feng BJ, Huang W, Shugart YY, Lee MK, Zhang F, Xia JC, Wang HY, Huang TB, Jian SW, Huang P (2002) Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet 31:395–399

    PubMed  CAS  Google Scholar 

  • Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. Embo J 17:6670–6677

    Article  PubMed  CAS  Google Scholar 

  • Geradts J, Ingram CD (2000) Abnormal expression of cell cycle regulatory proteins in ductal and lobular carcinomas of the breast. Mod Pathol 13:945–953

    Article  PubMed  CAS  Google Scholar 

  • Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD (2001) Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol 32:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Pan ZG, Li DJ, Yun JP, Zheng MZ, Hu ZY, Cheng LZ, Zeng YX (2006) The expression of p63 is associated with the differential stage in nasopharyngeal carcinoma and EBV infection. J Transl Med 4:23

    Article  PubMed  CAS  Google Scholar 

  • Jamerson MH, Johnson MD, Korsmeyer SJ, Furth PA, Dickson RB (2004) Bax regulates c-Myc-induced mammary tumour apoptosis but not proliferation in MMTV-c-myc transgenic mice. Br J Cancer 91:1372–1379

    Article  PubMed  CAS  Google Scholar 

  • Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, Dietel M, Petersen I (2002) Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch 440:187–194

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Sakabe I, Patel S, Zhang Y, Ahmad I, Gehan EA, Whiteside TL, Kasid U (2004) SCC-112, a novel cell cycle-regulated molecule, exhibits reduced expression in human renal carcinomas. Gene 328:187–196

    Article  PubMed  CAS  Google Scholar 

  • Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95:319–329

    Article  PubMed  CAS  Google Scholar 

  • Kwan KM, Kirschner MW (2005) A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis. Development 132:4599–4610

    Article  PubMed  CAS  Google Scholar 

  • Massion PP, Taflan PM, Jamshedur Rahman SM, Yildiz P, Shyr Y, Edgerton ME, Westfall MD, Roberts JR, Pietenpol JA, Carbone DP, Gonzalez AL (2003) Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63:7113–7121

    PubMed  CAS  Google Scholar 

  • Mo H, Vita M, Crespin M, Henriksson M (2006) Myc overexpression enhances apoptosis induced by small molecules. Cell Cycle 5:2191–2194

    PubMed  CAS  Google Scholar 

  • Nagata K, Inagaki M (2005) Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin. Oncogene 24:65–76

    Article  PubMed  CAS  Google Scholar 

  • Obaya AJ, Mateyak MK, Sedivy JM (1999) Mysterious liaisons: the relationship between c-Myc and the cell cycle. Oncogene 18:2934–2941

    Article  PubMed  CAS  Google Scholar 

  • Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3:317–330

    Article  PubMed  CAS  Google Scholar 

  • Pan ZG, Kashuba VI, Liu XQ, Shao JY, Zhang RH, Jiang JH, Guo C, Zabarovsky E, Ernberg I, Zeng YX (2005) High frequency somatic mutations in RASSF1A in nasopharyngeal carcinoma. Cancer Biol Ther 4:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Park BJ, Lee SJ, Kim JI, Lee SJ, Lee CH, Chang SG, Park JH, Chi SG (2000) Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res 60:3370–3374

    PubMed  CAS  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Qiu RG, Chen J, Kirn D, McCormick F, Symons M (1995) An essential role for Rac in Ras transformation. Nature 374:457–459

    Article  PubMed  CAS  Google Scholar 

  • Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767

    Article  PubMed  CAS  Google Scholar 

  • Repasky GA, Chenette EJ, Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14:639–647

    Article  PubMed  CAS  Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    Article  PubMed  CAS  Google Scholar 

  • Roux P, Gauthier-Rouviere C, Doucet-Brutin S, Fort P (1997) The small GTPases Cdc42Hs, Rac1 and RhoG delineate Raf-independent pathways that cooperate to transform NIH3T3 cells. Curr Biol 7:629–637

    Article  PubMed  CAS  Google Scholar 

  • Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, Loda M (2000) p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157:1769–1775

    PubMed  CAS  Google Scholar 

  • Sun J, Wiklund F, Zheng SL, Chang B, Balter K, Li L, Johansson JE, Li G, Adami HO, Liu W (2005) Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97:525–532

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A (2000) The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod Pathol 13:882–887

    Article  PubMed  CAS  Google Scholar 

  • Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (No. 30570817) and State Key Basic Research Programs 973 of China (NO.2002CB513101 and No.2004CB518701). We thank Ying Huang for collecting tissues and Zhong-yuan Tian for helping data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. X. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, M.Z., Zheng, L.M. & Zeng, Y.X. SCC-112 gene is involved in tumor progression and promotes the cell proliferation in G2/M phase. J Cancer Res Clin Oncol 134, 453–462 (2008). https://doi.org/10.1007/s00432-007-0306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-007-0306-x

Keywords

Navigation