Skip to main content

Advertisement

Log in

Metronomic trofosfamide inhibits progression of human lung cancer xenografts by exerting anti-angiogenic effects

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Recent studies of conventional chemotherapeutic drugs administered in metronomic therapy schedules showed remarkable inhibitory effects on tumor angiogenesis. Subsequent and prolonged tumor regression was achieved moreover by circumventing acquired drug resistance. In this study, metronomic and conventional trofosfamide were compared on human NSCLC xenograft “LX-1.”

Materials and methods

In vitro cytotoxicity of trofosfamide on tumor and human umbilical cord endothelial cells was determined under normoxic and hypoxic conditions. Additionally fractions and duration of cell cycles were analyzed by flow cytometry. In vivo LX-1 xenotransplanted nude mice were treated with trofosfamide in conventional and metronomic schedules (i.p./p.o.). Tumor sections were evaluated for microvessel density (MVD), relative growth fraction and apoptosis.

Results

In contrast to the rapid growth of conventionally treated lung cancer, long lasting tumor growth retardation over the total treatment period was achieved with metronomic treatment. While growth fraction and apoptotic rate of LX-1 cells remained unchanged, the MVD was significantly reduced (50%).

Conclusion

Our results show advantages of a metronomic trofosfamide schedule compared to a conventional bolus therapy mainly due to inhibition of angiogenesis. In vitro data show that this mechanism works under normoxic and hypoxic conditions and suggest that this is in part a direct cytotoxic effect on endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Batran SE, Atmaca A, Bert F, Jager D, Frisch C, Neumann A, Orth J, Knuth A, Jager E (2004) Dose escalation study for defining the maximum tolerated dose of continuous oral trofosfamide in pretreated patients with metastatic lung cancer. Onkologie 27:534–538

    Article  PubMed  CAS  Google Scholar 

  • Baguley BC, Holdaway KM, Thomsen LL, Zhuang L, Zwi LJ (1991) Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 27:482–487

    Article  PubMed  CAS  Google Scholar 

  • Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    PubMed  CAS  Google Scholar 

  • Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943

    PubMed  CAS  Google Scholar 

  • Bocci G, Francia G, Man S, Lawler J, Kerbel RS (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 100:12917–12922

    Article  PubMed  CAS  Google Scholar 

  • Boos J, Kupker F, Blaschke G, Jurgens H (1993) Trofosfamide metabolism in different species—ifosfamide is the predominant metabolite. Cancer Chemother Pharmacol 33:71–76

    Article  PubMed  CAS  Google Scholar 

  • Brinker A, Kisro J, Letsch C, Bruggemann SK, Wagner T (2002) New insights into the clinical pharmacokinetics of trofosfamide. Int J Clin Pharmacol Ther 40:376–381

    PubMed  CAS  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  • Falkson G, Falkson HC (1978) Trofosfamide in the treatment of patients with cancer. A pilot trial. S Afr Med J 53:886–888

    CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Gunsilius E, Gierlich T, Mross K, Gastl G, Unger C (2001) Palliative chemotherapy in pretreated patients with advanced cancer: oral trofosfamide is effective in ovarian carcinoma. Cancer Invest 19:808–811

    Article  PubMed  CAS  Google Scholar 

  • Hammers HJ, Kirchner H, Schlenke P (2000) Ultraviolet-induced detection of halogenated pyrimidines: simultaneous analysis of DNA replication and cellular markers. Cytometry 40:327–335

    Article  PubMed  CAS  Google Scholar 

  • Hartmann JT, Oechsle K, Mayer F, Kanz L, Bokemeyer C (2003) Phase II trial of trofosfamide in patients with advanced pretreated soft tissue sarcomas. Anticancer Res 23:1899–1901

    PubMed  CAS  Google Scholar 

  • Horvath V, Hartlapp JH, Hegewisch-Becker S, Feyerabend T, Fischer v. Weikersthal L, Illiger HJ, Jäger E, Peters SO, Reichardt P, Uthgenannt D, Weber K, Wagner T, Wiedemann G, Zschaber R (2000) Oral trofosfamide in elderly and/or heavily pretreated patients with metastatic lung cancer. Onkologie 23:341–344

    Article  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed  CAS  Google Scholar 

  • Jahnke K, Bechrakis NE, Coupland SE, Schmittel A, Foerster MH, Fischer L, Thiel E, Korfel A (2004) Treatment of primary intraocular lymphoma with oral trofosfamide: report of two cases and review of the literature. Graefes Arch Clin Exp Ophthalmol 242(9):771–776

    Article  PubMed  Google Scholar 

  • Joussen AM, Kruse FE, Volcker HE, Kirchhof B (1999) Topical application of methotrexate for inhibition of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol 237:920–927

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS, Klement G, Pritchard KI, Kamen B (2002) Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol 13:12–15

    Article  PubMed  CAS  Google Scholar 

  • Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P, Hicklin D, Kerbel RS (2002) Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res 8:221–232

    PubMed  CAS  Google Scholar 

  • Kueng W, Silber E, Eppenberger U (1989) Quantification of cells cultured on 96-well plates. Anal Biochem 182:16–19

    Article  PubMed  CAS  Google Scholar 

  • Man S, Bocci G, Francia G, Green SK, Jothy S, Hanahan D, Bohlen P, Hicklin DJ, Bergers G, Kerbel RS (2002) Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 62:2731–2735

    PubMed  CAS  Google Scholar 

  • Miller KD, Sweeney CJ, Sledge GW Jr (2001) Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19:1195–1206

    PubMed  CAS  Google Scholar 

  • Ormerod MG, Payne AW, Watson JV (1987) Improved program for the analysis of DNA histograms. Cytometry 8:637–641

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Adachi S, Yamamoto T, Murakami T, Tanaka K, Takahashi M (1988) Effects of denaturation with HCl on the immunological staining of bromodeoxyuridine incorporated into DNA. Cytometry 9:93–96

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Sandte W, Dageforde J, Klapdor R, Wagner T, Wiedemann GJ (1999) Trofosfamide in patients with pancreatic cancer. Anticancer Res 19:2485–2487

    PubMed  CAS  Google Scholar 

  • Shizukuda Y, Helisch A, Yokota R, Ware JA (1999) Downregulation of protein kinase cdelta activity enhances endothelial cell adaptation to hypoxia. Circulation 100:1909–1916

    PubMed  CAS  Google Scholar 

  • Vogt T, Hafner C, Bross K, Bataille F, Jauch KW, Berand A, Landthaler M, Andreesen R, Reichle A (2003) Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 98:2251–2256

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Hempel G, Boos J (1997) Trofosfamide: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the oral treatment of cancer. Anticancer Drugs 8:419–431

    Article  PubMed  CAS  Google Scholar 

  • Yu JL, Coomber BL, Kerbel RS (2002) A paradigm for therapy-induced microenvironmental changes in solid tumors leading to drug resistance. Differentiation 70:599–609

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Monica Vollmert for her invaluable assistance and Dr Clemens Engels for supporting our immunohistochemical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klink, T., Bela, C., Stoelting, S. et al. Metronomic trofosfamide inhibits progression of human lung cancer xenografts by exerting anti-angiogenic effects. J Cancer Res Clin Oncol 132, 643–652 (2006). https://doi.org/10.1007/s00432-006-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-006-0112-x

Keywords

Navigation