Skip to main content

Advertisement

Log in

Discriminate gene lists derived from cDNA microarray profiles of limited samples permit distinguishing mesenchymal neoplasia ex vivo

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Mesenchymal neoplasia comprises a heterogeneous group of tumors with over 200 benign neoplasms and 100 sarcomas. Currently, tumors are classified using histologic and immunocytologic characteristics, with diagnostic error rates reported as high as 40% of cases. As a feasibility study, our goal was to generate a preliminary discriminatory gene list for selected mesenchymal tumors, including sarcomas. This technique may enable an eventual molecular classification schema based on expression profiles that can complement current clinical and pathologic diagnostic procedures in mesenchymal tumors.

Methods

cDNA microarray analyses were preformed on connective tissue tumors obtained at time of surgical resection or biopsy. Messenger RNA (mRNA) from four general tumor classes was competitively hybridized against a human dermal fibroblast cell line comparator and the resulting gene expression profiles processed by ANOVA and linear discriminate analysis.

Results

The tissue classification involved 18 patients with malignant peripheral nerve sheath tumors, giant cell containing tumors, benign spindle cell lesions, or Ewing’s family of tumors. Lymph nodes from two patients served comparative purposes. Twenty-five differentially regulated genes considered most variable among the five tissue classes were identified. The tissues were segregated into five classes by linear discriminate analysis.

Conclusions

Linear discriminate analysis of cDNA gene expression profiles partitioned mesenchymal tumor classes, even when constrained by limited sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalfs CM, Salieb-Beugelaar B, Wanders RJA, Mannens MMAM, Wijburg FA (2000) A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis. Human Mutation 16:18–22

    CAS  PubMed  Google Scholar 

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  CAS  PubMed  Google Scholar 

  • Arbiser ZK, Folpe AL, Weiss SW (2001) Consultative (expert) second opinions in soft tissue pathology. Analysis of problem-prone diagnostic situations. Am J Clin Pathol 116:473–476

    Article  CAS  PubMed  Google Scholar 

  • Birkedal-Hansen H (1995) Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 7:728–735

    Article  CAS  PubMed  Google Scholar 

  • Blair HC, Sidonio RF, Friedberg RC, Khan NN, Dong S-S (2000) Proteinase expression during differentiation of human osteoclasts in vitro. J Cell Biochem 78:627–637

    Article  CAS  PubMed  Google Scholar 

  • Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St. Croix B (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61:6649–6655

    CAS  PubMed  Google Scholar 

  • Chiellini C, Costa M, Novelli SE, Amri E-Z, Benzi L, Bertacca A, Cohen P, Del Prato S, Friedman JM, Maffei M (2003) Identification of cathepsin K as a novel marker of adiposity in white adipose tissue. J Cell Physiol 195:309–321

    Article  CAS  PubMed  Google Scholar 

  • Chung CH, Bernard PS, Perou CM (2002) Molecular portraits and the family tree of cancer. Nature Genetics (Suppl) 32:533–540

    Google Scholar 

  • Fletcher CDM, Unni KK, Mertens F (eds) (2002) World health organization classification of tumors. Pathology & genetics of tumours of soft tissue and bone. IARC, Lyon, pp 427

  • Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K definciency. Science 273:1236–1238

    CAS  PubMed  Google Scholar 

  • Gonzalez-Garcia I, Sole RV, Costa J (2002) Metapopulation dynamics and spatial heterogeneity in cancer. Proc Natl Acad Sci USA 99:13085–13089

    Google Scholar 

  • Grier HE (1999) Soft tissue sarcoma: apples, oranges, and passion fruit. J Clin Oncol 17:3695–3696

    CAS  PubMed  Google Scholar 

  • Habelhah H, Okada F, Kobayashi M, Nakai K, Choi S, Hamada J, Moriuchi T, Kaya M, Yoshida K, Fujinaga K, Hosokawa M (1999) Increased E1AF expression in mouse fibrosarcoma promotes metastasis through induction of MT1-MMP expression. Oncogene 18:1771–1776

    Article  CAS  PubMed  Google Scholar 

  • Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148:779–790

    Article  CAS  PubMed  Google Scholar 

  • Higashino F, Yoshida K, Noumi T, Seiki M, Fujinaga K (1995) Ets-related protein E1A-F can activate three different matrix metalloproteinase gene promoters. Oncogene 10:1461–1463

    CAS  PubMed  Google Scholar 

  • Kenjiro A, Woodman A, Urquidi V, Mangham DC, Tarin D, Goodsin S (2000) Telomerase activity in soft-tissue and bone sarcomas. Clin Cancer Res 6:4776–4781

    PubMed  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837

    Google Scholar 

  • Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Google Scholar 

  • Letson GD, Muro-Cacho CA (2001) Genetic and molecular abnormalities in tumors of the bone and soft tissues. Cancer Control 8:239–251

    CAS  PubMed  Google Scholar 

  • Lopez M, Vici P, Di Lauro L, Carpano S (2002) Increasing single epirubicin doses in advanced soft tissue sarcomas. J Clin Oncol 20:1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Mackall CL, Meltzer PS, Helman LJ (2002) Focus on sarcomas. Cancer Cell 2:175–178

    Article  CAS  PubMed  Google Scholar 

  • Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R, Goldberger N, Elkahloun AG, Willi N, Koivisto P, Ferhle W, Raffeld M, Sauter G, Kallioniemi O-P (2002) Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 62:1256–1260

    CAS  PubMed  Google Scholar 

  • Nagayama S, Katagiri T, Tsunoda T, Hosaka T, Nakashima Y, Araki N, Kusuzaki K, Nakayama T, Tsuboyama T, Nakamura T, Imamura M, Nakamura Y, Toguchida J (2002) Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res 62:5859–5866

    CAS  PubMed  Google Scholar 

  • Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O’Connell JX, Zhu S, Fero M, Sherlock G, Pollack JR, Brown PO, Botstein D, van de Rijn M (2002) Molecular characterization of soft tissue tumours: a gene expression study. Lancet 359:1301–1307

    Article  CAS  PubMed  Google Scholar 

  • Owens JM, Matsuo K, Nicholson GC, Wagner EF, Chambers TJ (1999) Fra-1 potentiates osteoclastic differentiation in osteoclast-macrophage precursor cell lines. J Cell Physiol 179:170–178

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Nino ME, Scapoli L, Martinelli M, Land S, Mossman BT (2003) Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res 63:3539–3545

    CAS  PubMed  Google Scholar 

  • Randall RL, Wade ML, Albritton KH, Joyner DE (2003a) Retrieval yield of total and messenger RNA in mesenchymal tissue ex vivo. Clin Ortho Rel Res 415:59–63

    Google Scholar 

  • Randall RL, Wade ML, Coffin CM, Albritton KH, Joyner DE (2003b) cDNA microarray analysis to distinguish tumor type ex vivo. Clin Ortho Rel Res 415:S110-S119

    Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  CAS  PubMed  Google Scholar 

  • Searle SR, Casella G, McCullogh CE (1992) Variance components. Wiley series in probability and statistics. Wiley, New York

  • Sgroi, DC, Teng S, Robinson G, LeVangie R, Hudson, Jr JR, Elkahloun AG (1999) In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59:5656–5661

    CAS  PubMed  Google Scholar 

  • Shukla A, Timblin CR, Hubbard AK, Bravman J, Mossman BT (2001) Silica-induced activation of c-Jun-NH2-terminal amino kinases, protracted expression of the activator protein-1 proto-oncogene, fra-1, and s-phase alterations are mediated via oxidative stress. Cancer Res 61:1791–1795

    CAS  PubMed  Google Scholar 

  • Sorci-Thomas M, Babiak J, Rudel LL (1990) Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. J Biol Chem 265:2665–2670

    CAS  PubMed  Google Scholar 

  • Spremulli EN, Dexter DL (1983) Human tumor cell heterogeneity and metastasis. J Clin Oncol 1:496–509

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc, Series B, 64:479–498

    Google Scholar 

  • Szabo A, Boucher K, Carroll WL, Klebanov LB, Tsodikov AD, Yakovlev AY (2002) Variable selection and pattern recognition with gene expression data generated by the microarray technology. Math Biosciences 176:71–98

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Google Scholar 

  • Uria JA, Balbin M, Lopez JM, Alvarez J, Vizoso F, Takigawa M, Lopez-Otin C (1998) Collagenase-3 (MMP-13) expression in chondrosarcoma cells and its regulation by basic fibroblast growth factor. Am J Pathol 153:91–101

    CAS  PubMed  Google Scholar 

  • Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW (2002) Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res 62:2281–2286

    CAS  PubMed  Google Scholar 

  • Wernisch L, Kendall SL, Soneji S, Wietzorrek A, Parish T, Hinds J, Butcher PD, Stoker NG (2003) Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19:53–61

    Article  CAS  PubMed  Google Scholar 

  • Westermarck J, Kahari V-M (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    CAS  PubMed  Google Scholar 

  • Wheelock MJ, Johnson KR (2003) Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 19:207–235

    Article  CAS  PubMed  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Speed TP (2000) Normalization of cDNA microarray data. Technical Report 589, Department of Statistics, University of California, Berkeley

Download references

Acknowledgments

This project was supported by the Terri Anna Perine Sarcoma Fund and a grant from the Orthopaedic Research and Education Foundation. We thank Philip Moos and the faculty and staff of the Orthopedic Bioengineering Research Lab, Department of Orthopedics, for reviewing the manuscript, Ariel Rogers for collation and preparation of the tables, Laurent Perreard (ARUP Laboratories) for the real time RT-PCR analysis, and Matt McIff for technical assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lor Randall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyner, D.E., L.Wade, M., Szabo, A. et al. Discriminate gene lists derived from cDNA microarray profiles of limited samples permit distinguishing mesenchymal neoplasia ex vivo. J Cancer Res Clin Oncol 131, 137–146 (2005). https://doi.org/10.1007/s00432-004-0640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-004-0640-1

Keywords

Navigation