Skip to main content

Advertisement

Log in

Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Resistance to chemotherapeutic drugs is a hallmark of many human cancers, which can occur independent of p53 gene status; however, the presence of wild-type p53 in chemorefractory tumors confers greater resistance to cisplatin, but such tumors do not display complete cross-resistance to the platinum analog (1R,2R-diaminocyclohexane)(trans-diacetato)(dichloro)platinumIV (DACH-Ac-Pt). In this article we examine DNA damage-induced phosphorylation of p53 and downstream p53-dependent transactivation events in cisplatin-sensitive and cisplatin-resistant human cancer cell lines possessing wild-type p53.

Methods

Western-blot analysis was utilized to study the effect of cisplatin and the analog on p53 phosphorylation and p53-dependent target genes.

Results

In response to CDDP and DACH-Ac-Pt, both CDDP-sensitive and CDDP-resistant models demonstrated time- and dose-dependent inductions of total p53 protein and an increase in Ser-15 phosphorylation, which was more pronounced with CDDP. Although phosphorylation of p53 at Ser-392 was also observed in CDDP-treated sensitive and resistant cells, it was weak or absent in response to DACH-Ac-Pt. Lack of Ser-392 phosphorylation by DACH-Ac-Pt, however, did not affect the induction of p21WAF1/CIP1 or Mdm2. Similarly, inductions of p21WAF1/CIP1 and Mdm2 were observed in sensitive cells exposed to cisplatin. In marked contrast, cisplatin-mediated induction of p21WAF1/CIP1 was minimal or absent in resistant cells, but that of Mdm2 was unaffected. Wortmannin, a PI3-kinase (PI3-K) inhibitor, caused a dose-dependent inhibition of total p53 accumulation, Ser-15 phosphorylation and p21WAF1/CIP1 transactivation in response to both CDDP and DACH-Ac-Pt, indicating that members of the PI3-K family are involved in phosphorylation of p53 and that transactivation of p21WAF1/CIP1 is p53 dependent.

Conclusion

These studies demonstrate that cisplatin and DACH-Ac-Pt differentially phosphorylate p53 through independent DNA damage-induced pathways, and that the kinase-mediated phosphorylation of p53 at Ser-15 or Ser-392 is unaltered in resistance. Moreover, the phosphorylation status of Ser-392 on its own does not appear to correlate with p21WAF1/CIP1 or Mdm2 induction in these studies; however, a lack of increase in p21WAF1/CIP1 by cisplatin, but not DACH-Ac-Pt, provides a correlation with resistance and its circumvention, and implicates the role for cyclin-dependent kinase inhibitor in the differential cytotoxic effects of the two platinum agents against resistant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3a, b.
Fig. 4a, b.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Andrews PA, Howell SB (1990) Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells 2:35–243

    CAS  PubMed  Google Scholar 

  • Appella E, Anderson CW (2001) Post-translational modifications and activations of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  CAS  PubMed  Google Scholar 

  • Beesley JS, Ferry KV, Johnson SW, Godwin AK, Hamilton TC (1997) Ovarian cancer: biological basis of therapy. In: Langdon SM, Miller WM, Berchuck A (eds) Biology of female cancers. CRC Press, New York, pp 153–166

  • Boente MP, Hurteau J, Rodriguez GC, Bast RC, Berchuck A (1993) The biology of ovarian cancer. Curr Opin Oncol 5:900–907

    Google Scholar 

  • Buick RN, Pullano R, Trent JM (1985) Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res 45:3668–3676

    CAS  PubMed  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  CAS  PubMed  Google Scholar 

  • Damia G, Sanchez Y, Erba E, Broggini M (2001) DNA damage induces p53-dependent down regulation of hCHK1. J Biol Chem 276:10641–10645

    Article  CAS  PubMed  Google Scholar 

  • Dumaz N, Meek DW (1999) Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM 2. EMBO J 18:7002–7010

    CAS  PubMed  Google Scholar 

  • Eastman A, Schulte N (1998) Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II). Biochemistry 27:4730–4734

    Google Scholar 

  • Fan S, Chang JK, Smith ML, Duba D, Fornace AJ Jr, O'Connor PM (1997) Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogenmustard. Oncogene 14:2127–2136

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Smith ML, Rivet DJ, Duba D, Zhan Q, Kohn KW, Fornace AJ Jr, O'Connor PM (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55:1649–1654

    CAS  PubMed  Google Scholar 

  • Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehme A, Christen RD, Howell SB (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res 56:4881–4886

    CAS  PubMed  Google Scholar 

  • Fritsche M, Haessler C, Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8:307–318

    CAS  PubMed  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Develop 12:2973–2983

    CAS  PubMed  Google Scholar 

  • Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci USA 89:3070–3074

    CAS  PubMed  Google Scholar 

  • Gore ME, Levy V, Rustin G, Perren T, Calvert AH, Earl H, Thompson JM ( 1995) Paclitaxel (Taxol) in relapsed and refractory ovarian cancer: UK and Eire experience. Br J Cancer 72:1016–1019

    CAS  PubMed  Google Scholar 

  • Hagopian GS, Mills GB, Khokhar AR, Bast RC, Siddik ZH (1999) Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R-diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res 5:655–663

    CAS  PubMed  Google Scholar 

  • Hamaguchi K, Godwin AK, Yakushiji M, O'Dwyer PJ, Ozols RF, Hamilton TC (1993) Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res 53:5225–5232

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821–1828

    Google Scholar 

  • Hirao H, Cheung A, Duncan G, Girard P-M, Elia AJ, Wakeham A, Okada H, Sarkissian T, Wong JA, Sakai T, Stanchina E, Bristow RG, Suda T, Lowe SW, Jeggo PA, Elledge SJ, Mak TW (2002) Chk2 is a tumor suppressor that regulates apoptosis in both ATM-dependent and ATM-independent manner. Mol Cell Biol 22:6521–6532

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman L, Prives C (1999) Covalent and noncovalent modifiers of the p53 protein. Cell Mol Life Sci 55:76–87

    Article  CAS  PubMed  Google Scholar 

  • Johnson SW, Laub PB, Beesley JS, Ozols RF, Hamilton TC (1997) Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res 57:850–856

    CAS  PubMed  Google Scholar 

  • Kapoor M, Lozano G (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci USA 95:2834–2837

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Hamm R, Yan W, Taya Y, Lozano G (2000) Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19:358–364

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  • Kelley SL, Rozencweig M (1989) Resistance to platinum compounds: mechanisms and beyond. Eur J Can Clin Oncol 25:1135–1140

    CAS  Google Scholar 

  • Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP, Lavin MF (1998) ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 20:398–400

    Article  CAS  PubMed  Google Scholar 

  • Kigawa J, Sato S, Shimada M, Takahashi M, Itamochi H, Kanamori Y, Terakawa N (2001) p53 gene status and chemosensitivity in ovarian cancer. Hum cell 14:165–171

    CAS  PubMed  Google Scholar 

  • Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495

    CAS  Google Scholar 

  • Laskin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    CAS  PubMed  Google Scholar 

  • Lane DP (1992) p53: guardian of genome. Nature 358:15–16

    CAS  PubMed  Google Scholar 

  • Lee Y, McKinnon PJ (2000) ATM dependent apoptosis in the nervous system. Apoptosis 5:523–529

    Article  CAS  PubMed  Google Scholar 

  • Lees-Miller SP, Chen YR, Anderson CW (1990) Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 10:6472–6481

    CAS  PubMed  Google Scholar 

  • Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P, Staedel C (2000) The p21 WAF1/CIP1 cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 161:17–26

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Taya Y, Ikeda M, Levine AJ (1998) Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 95:6399–6402

    Article  CAS  PubMed  Google Scholar 

  • Meek DW (1998) Multisite phosphorylation and the integration of stress signals at p53. Cell Signal 10:159–166

    Article  CAS  PubMed  Google Scholar 

  • Meyn MS (1995) Ataxia telangiectasia and cellular response to DNA damage. Cancer Res 55:5991–6001

    CAS  PubMed  Google Scholar 

  • Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR (2000) The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel. Cancer Res 60:5390–5394

    CAS  PubMed  Google Scholar 

  • Price BD, Youmell MB (1996) The phosphatidylinositol 3-kinase inhibitor wortmannin sensitizes murine fibroblasts and human tumor cells to radiation and blocks induction of p53 following DNA damage. Cancer Res 56:246–250

    CAS  PubMed  Google Scholar 

  • Prives C (1998) Signaling to p53: breaking the MDM 2-p53 circuit. Cell 95:5–8

    CAS  PubMed  Google Scholar 

  • Rosenzweig KE, Youmell MB, Palayoor ST, Price BD (1997) Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res 3:1149–1156

    CAS  PubMed  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM 2. Cell 91:325–334

    CAS  PubMed  Google Scholar 

  • Siddik ZH, Boxall FE, Harrap KR (1987) Flameless atomic absorption spectrophotometric determination of platinum in tissues solubilized in hyamine hydroxide. Anal Biochem 163:21–26

    CAS  PubMed  Google Scholar 

  • Siddik ZH, Mims B, Lozano G, Thai G (1998) Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer Res 58:698–703

    CAS  PubMed  Google Scholar 

  • Siddik ZH, Hagopian GS, Thai G, Tomisaki S, Toyomasu T, Khokhar AR (1999) Role of p53 in the ability of 1,2-diaminocyclohexane-diacetato-dichloro-Pt(IV) to circumvent cisplatin resistance. J Inorg Biochem 77:65–70

    Article  CAS  PubMed  Google Scholar 

  • Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157

    Article  PubMed  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Develop 13:152–157

    CAS  PubMed  Google Scholar 

  • Tsao YP, Huang SJ, Chang JL, Hsieh JT, Pong RC, Chen SL (1999) Adenovirus-mediated p21 WAF1/CIP1 (WAF1/SDII/CIP1) gene transfer induces apoptosis of human cervical cancer cell lines. J Virol 73:4983–4990

    CAS  PubMed  Google Scholar 

  • Vollano JF, Al-Baker S, Dabrowiak JC, Schurig JE (1987) Comparative antitumor studies on platinum(II) and platinum(IV) complexes containing 1,2-diaminocyclohexane. J Med Chem 30:716–719

    CAS  PubMed  Google Scholar 

  • Vousden KH (2002) Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602:47–59

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B (1996) Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21 WAF1/CIP1. Nature 381:713–716

    PubMed  Google Scholar 

  • Weinberg RA (1991) Tumor suppressor genes. Science 254:1138–1146

    CAS  PubMed  Google Scholar 

  • Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement. The authors thank P. Hennessey for his expert technical assistance, as well as K. Biescar and J. Neicheril for preparation of the manuscript. This work was supported by NCI RO1 CA77332 and CA82361, and U.S. Army DAMD 17-99-1-9269 grants to Z.H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid H. Siddik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujoo, K., Watanabe, M., Nakamura, J. et al. Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents. J Cancer Res Clin Oncol 129, 709–718 (2003). https://doi.org/10.1007/s00432-003-0480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-003-0480-4

Keywords

Navigation