Skip to main content

Advertisement

Log in

Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

G-protein-coupled receptors are known to mediate cell growth via divergent signaling pathways. It has been reported that colon cancer cells express muscarinic acetylcholine receptor (mAChR) although their functional role is largely unknown. The aim of this study is to elucidate possible mechanisms responsible for the growth-promoting effect of mAChRs in colon cancer cells by using colon cancer cell line T84.

Methods

Carbachol, a stable mAChR agonist, dose-dependently induced cell growth with a maximal effect observed at 100 μM, equipotent with 1 nM EGF. 4-DAMP, a specific antagonist of subtype 3 mAChR, inhibited the stimulatory effect by carbachol, suggesting that the growth-promoting effect was receptor-mediated. Carbachol also dose-dependently stimulated extracellular signal-regulated protein kinase (ERK) activation. This effect was inhibited by PD98059, an inhibitor of extracellular signal-regulated protein kinase kinase, which also blocked carbachol activation of cell proliferation, indicating that the p21Ras-ERK pathway is an important signaling cascade in the mitogenic effect. To investigate how mAChR activated the p21Ras-ERK pathway, transactivation of epidermal growth factor receptor (EGFR) was examined.

Results

Carbachol induced tyrosine phosphorylation of EGFR, which was abolished by an EGFR tyrosine kinase inhibitor AG1478. Transactivation by carbachol was also abrogated by a metalloproteinases (MMPs) inhibitor GM6001 or an EGFR-blocking antibody (LA-1), suggesting that binding of EGFR ligand(s) produced by MMPs may initiate transactivation in a manner dependent on EGFR tyrosine kinase. The tyrosine-phosphorylated EGFR was immunoprecipitated together with GRB2 and tyrosine-phosphorylated Shc, indicating that transactivated EGFR is able to generate downstream signals. AG 1478 and LA-1 inhibited carbachol stimulation of cell growth.

Conclusions

Taken together, our results indicate that the growth-promoting effect of subtype 3 mAChR in colon cancer cells may depend on transactivated EGFR-ERK pathways. EGFR not only receives external stimuli but also serves as a scaffold for downstream signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3A,B.
Fig. 4A,B.
Fig. 5.

Similar content being viewed by others

Abbreviations

ERK:

Extracellular signal-regulated protein kinase

MAPK:

Mitogen-activated protein kinase

EGF:

Epidermal growth factor

GPCR:

G-protein-coupled receptor

mAChR:

Muscarinic acetylcholine receptor

References

  • Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S (1991) G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA 88:11354–11358

    CAS  PubMed  Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385:347–350

    Google Scholar 

  • Ashkenazi A, Ramachandran J, Capon DJ (1989) Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature 340:146–150

    CAS  PubMed  Google Scholar 

  • Binder HJ, Sandle GI (1987) Electrolyte absorption and secretion in the mammalian colon. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1389–1418

  • Blaukat A, Barac A, Cross MJ, Offermanns S, Dikic I (2000). G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Galpha(q) and Galpha(i) signals. Mol Cell Biol 20:6837–6848

    Article  CAS  PubMed  Google Scholar 

  • Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  Google Scholar 

  • Bonner TI (1989) The molecular basis of muscarinic receptor diversity. Trends Neurosci 12:148–151

    CAS  PubMed  Google Scholar 

  • Brown JH, Sah V, Moskowitz S, Ramirez T, Collins L, Post G, Goldstein D (1997) Pathways and roadblocks in muscarinic receptor-mediated growth regulation. Life Sci 60:1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Carroll RE, Matkowskyj KA, Tretiakova MS, Battey JF, Benya RV (2000) Gastrin-releasing peptide is a mitogen and a morphogen in murine colon cancer. Cell Growth Differ 11:385–393

    CAS  PubMed  Google Scholar 

  • Crespo P, Xu N, Simonds WF, Gutkind JS (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature 369:418–420

    Google Scholar 

  • Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560

    Google Scholar 

  • Davis RJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556

    CAS  PubMed  Google Scholar 

  • Dickinson KE, Frizzell RA, Sekar MC (1992) Activation of T84 cell chloride channels by carbachol involves a phosphoinositide-coupled muscarinic M3 receptor. Eur J Pharmacol 225:291–298

    Article  CAS  PubMed  Google Scholar 

  • Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92:7686–7689

    CAS  PubMed  Google Scholar 

  • Ecknauer R, Thompson WJ, Johnson LR, Rosenfeld GC (1980) Isolated parietal cells: [3H]QNB binding to putative cholinergic receptors. Am J Physiol 239:G204–209

    CAS  PubMed  Google Scholar 

  • Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896

    CAS  PubMed  Google Scholar 

  • Frucht H, Jensen RT, Dexter D, Yang WL, Xiao Y (1999) Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin Cancer Res 5:2532–2539

    CAS  PubMed  Google Scholar 

  • Galardy RE, Cassabonne ME, Giese C, Gilbert JH, Lapierre F, Lopez Schaefer ME, Stack R, Sullivan M, Summers B, et al (1994) Low molecular weight inhibitors in corneal ulceration. Ann N Y Acad Sci 732:315–323

    CAS  PubMed  Google Scholar 

  • Gudermann T, Schoneberg T, Schultz G (1997) Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 20:399–427

    Google Scholar 

  • Gutkind JS, Novotny EA, Brann MR, Robbins KC (1991) Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc Natl Acad Sci USA 88:4703–4707

    CAS  PubMed  Google Scholar 

  • Hackel PO, Zwick E, Prenzel N, Ullrich A (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11:184–189

    CAS  PubMed  Google Scholar 

  • Hawes BE, van Biesen T, Koch WJ, Luttrell LM, Lefkowitz RJ (1995) Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. J Biol Chem 270:17148–17153

    CAS  PubMed  Google Scholar 

  • Julius D, Livelli TJ, Jessell TM, Axel R (1989) Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244:1057–1062

    CAS  PubMed  Google Scholar 

  • Keely SJ, Uribe JM, Barrett KE (1998) Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J Biol Chem 273:27111–27117

    CAS  PubMed  Google Scholar 

  • Kinoshita T, Takahashi Y, Sakashita T, Inoue H, Tanabe T, Yoshimoto T (1999) Growth stimulation and induction of epidermal growth factor receptor by overexpression of cyclooxygenases 1 and 2 in human colon carcinoma cells. Biochim Biophys Acta 1438:120–130

    Article  CAS  PubMed  Google Scholar 

  • Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1788

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183

    Google Scholar 

  • Maoret JJ, Pospai D, Rouyer-Fessard C, Couvineau A, Laboisse C, Voisin T, Laburthe M (1994) Neurotensin receptor and its mRNA are expressed in many human colon cancer cell lines but not in normal colonic epithelium: binding studies and RT-PCR experiments. Biochem Biophys Res Commun 203:465–471

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Hiraoka S, Tsutsui S, Kitamura S, Shinomura Y, Matsuzawa Y (2001) Epidermal growth factor receptor mediates stress-induced expression of its ligands in rat gastric epithelial cells. Gastroenterology 120:108–116

    CAS  PubMed  Google Scholar 

  • Murakami H, Masui H (1980) Hormonal control of human colon carcinoma cell growth in serum-free medium. Proc Natl Acad Sci USA 77:3464–3468

    CAS  PubMed  Google Scholar 

  • Nagata A, Ito M, Iwata N, Kuno J, Takano H, Minowa O, Chihara K, Matsui T, Noda T (1996) G protein-coupled cholecystokinin-B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo. Proc Natl Acad Sci USA 93:11825–11830

    CAS  PubMed  Google Scholar 

  • Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8:289–293

    Article  CAS  PubMed  Google Scholar 

  • Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    Google Scholar 

  • Radinsky R, Risin, Fan, Dong, Bielenberg, Bucana, Fidler (1995) Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1:19–31

    CAS  PubMed  Google Scholar 

  • Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1996) Mad-related genes in the human. Nat Genet 13:347–349

    CAS  PubMed  Google Scholar 

  • Roberts RB, Min L, Washington MK, Olsen SJ, Settle SH, Coffey RJ, Threadgill DW (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 99:1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Skibber JM, Minsky BD, Hoff PM (2001) Cancer of the colon. In: Devita VT Jr, Rosenberg SHSA (eds) Cancer principles & practice of oncology, vol. 1. Lippincott Williams & Wilkins, Philadelphia, pp 1216–1271

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    CAS  PubMed  Google Scholar 

  • Smith AM, Watson SA (2000) Gastrin and gastrin receptor activation: an early event in the adenoma-carcinoma sequence. Gut 47:820–824

    CAS  PubMed  Google Scholar 

  • Tsai W, Morielli AD, Peralta EG (1997) The m1 muscarinic acetylcholine receptor transactivates the EGF receptor to modulate ion channel activity. Embo J 16:4597–4605

    CAS  PubMed  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    CAS  PubMed  Google Scholar 

  • Watson SA, Durrant LG, Morris DL (1988) Growth-promoting action of gastrin on human colonic and gastric tumour cells cultured in vitro. Br J Surg 75:342–345

    CAS  PubMed  Google Scholar 

  • Yang WL, Frucht H (2000) Cholinergic receptor up-regulates COX-2 expression and prostaglandin E(2) production in colon cancer cells. Carcinogenesis 21:1789–1793

    Article  CAS  PubMed  Google Scholar 

  • Zhukova E, Sinnett-Smith J, Rozengurt E (2001) Protein kinase D potentiates DNA synthesis and cell proliferation induced by bombesin, vasopressin, or phorbol esters in Swiss 3T3 cells. J Biol Chem 276:40298–40305

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukegawa, JI., Takeuchi, Y., Kusayanagi, S. et al. Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol 129, 272–278 (2003). https://doi.org/10.1007/s00432-003-0433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-003-0433-y

Keywords

Navigation